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Abstract

\We describean approach for interactive collision detectionand proximity computatios on massivenodelscom-
posedof millions of geometricprimitives. We addressissuesrelatedto interactive data accessand processing
in a large geometricdatabasewhich may not fit into main memoryof typical desktopworkstationsor comput-
ers. e present a new algorithm using overlap graphsfor localizing the “r egions of interest" within a massive
model,thereby redudng runtime memoryrequiremerts. The overlap graph is computedoff-line, pre-processed
using graph partitioning algorithms,and modifiedon the fly as needd. At run time, we traveiselocalizedsub-
graphs to ched the correspading geoméry for proximity and pre-feth geometryand auxiliary data structuies.
To performinteractive proximity queries we useboundng-volumehierarchiesand take advantage of spatialand
tempoal coheence Basedon the proposedalgorithms,we havedevelopeda systentalled IMMPACT and used
it for interactionwith a CAD modelof a powerplant consistingof over 15 million triangles.We are ableto per
form a numberof proximity queriesin real-timeon sud a model.In termsof modelcompleity and application
to large modelswe haveimprovedthe performanceof interactive collision detectionand proximity computation

algorithmsby anorderof magnituc.

1. Intr oduction

The currenttechndogy for virtual andimmersie erviron-
mentsoffers us greatpotentialfor usein industrialconcep
designand evaluation. It can provide a designspacecon-
sistingof three-dimensioal computergeneratedmagesand
the userscaninteractwith themusingintuitive interfacesin

real-time. Suchtechnola@y is increasindy being usedfor
simulation-basedlesignand multi-disciplinary reviews of
large CAD modelscompose of millions of primitives(e.g.
submarinesairplanespower plants,etc.).A key compment
of suchernvironmerts is the ability to directly perceve and
manipulatevirtual objectsinteractiely, ratherthan simply
viewing a passve ervironmert. This may involve interac-
tionslike grabbinganobjectandmoving it arouncdthevirtual
environment using naturaland physicalmotion. For mary
CAD applicationsthe designersvould alsolik e to testfor
accessibilityof partsandfeasibility of theentiredesign Fur-

thermorejt shouldbe possibleto reach,manipulateandex-

tract nearly ary given part of the modelfor inspectionand
repait Any suchsystemfor designand evaluationof mas-
sive modelsneedshe capabilityto performinteractie colli-
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siondetectiomandproximity computationdetweerrealand
virtual objects.Theseincludecheckingtwo or moreobjects
for overlap.

A numberof algorithmshave beenproposedor perform-
ing proximity computation®n geometrionodels.Thecom-
monly usedalgorithmsutilize boundng volume hierarchies
to acceleratehesequeries.However, no good algorithms
are known for partitioning massve modelsautomatically
computingbalancedhierarchies and orderingthe queries.
Furthermorethesehierarchiegequireconsicerablestorage.
For example,someof the recentlypropcssedboundingvol-
umesfor fastcollision detection(e.g.OBBs3 12, k-DOPs!7,
sphericalshells8) requiremary hundredsof bytesper tri-
angleon average For amodelcompose of 15 million trian-
gles,suchhierarchieswill needmary gigabytesof memory
much morethanthe available main memoryon even high-
endgraphicssystemsAs aresult,earlieralgorithmsandthe
resulting systemscan only handlerelatively small models
composedf hundedsof thousaus of polygons atinterac-
tive rates.They are insufiicient to handlemassve models
composedf severalmillions of polygons.This malesit dif-
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Figure 1: Interactivecollision detection& toleranceverifi-
cationbetweera userandthe pipesin the powergant

ficult to achieve real-timeinteractionwith massie models
for virtual prototypingapplications.

Main contributions: We presentnew algorithmfor per
forming interactie collision detectionand proximity com-
putationson massve modelswith a relatively small and
boundced memoryfootprint. We introducethe conceptof an
overlap graph anduseit to exploit locality of computation
For alargemodel,thealgorithmautomaticallycompuesthe
proximity informationbetweerobjectsandrepresents us-
ing anoverlapgraph.Theoverlapgraphis computedff-line
and pre-procssedusing graph partitioning, object decom-
positionandrefinementlgorithms.At run time we traverse
localized sub-graphsprder the computationsto checkthe
correspoding geometryfor proximity tests,and pre-fetch
geometryandassociatethierarchicadatastructuresTo per
form interactve proximity computationsn dynamic ervi-
ronments,we use the bounding-volume-herarchies,mod-
ify the localized sub-grajn(s) on the fly, and take adwan-
tageof spatialandtemporalcohereme. The resultingalgo-
rithms have beenimplementedas part of a system,IMM-
PACT (Interactve Massve Mode Proximity and Collision
Tester),usedfor interactve proximity computatios on a
CAD modelof a coal-firedpawer plant,compose of over
15 million triangles.The model itself takes about 1.3 GB
of disk spaceln practice we areableto performproximity
computatios in a few millisecondson a SGI Infinite Real-
ity with 195MHz R10000processoranda memorycache
sizeof 160MB. In Fig. 1, we shaw a snapshofrom our sys-
temwhereit interactively detectsollisionsbetweertheuser
andthe pipesin the power plant. In termsof applicationto
massve models,we improve the performanceof interactive
collision detectionalgorithmsby almostan orderof magni-
tude.
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Our algorithmsand systemimplementationdescribedn
this paperhave beenspecializedfor interactve proximity
guerieson massve modelsfor real-timeinteraction.How-
ever, the overall approachand algorithmic techniquesare
generalenoughto be applicalle to otherinteractve opera-
tionsthatrequireprocessingandaccessingf large geomet-
ric or spatialdatabasesf complex 3D environments.

Organization: The restof this paperis organizedas fol-
lows.In Section2 we briefly suney relatedwork on proxim-
ity queriesand managmentof large geometricdatasetsin
Section3 we give anoverview of our approactanddescribe
algorithmsto build proximity datastructuresin Section4.
In Section5 we presentlgorithmsfor interactive proximity
querieggiventhelocalizedsub-grapik for bothstaticanddy-
namicqueriesFinally, in Section6, we describeour system,
IMMPACT, andhighlightits performarce.

2. RelatedWork

In this section,we briefly survey relatedwork on collision
detectionandproximity computationsaswell astechnigues
for managng andpartitioninglarge geoméric datasets.

2.1. Collision Detectionand Proximity Computations

The problemsof collision detection,contactdetermination
and distancecomputationhave beenextensiely studiedin
computationalgeometry robotics and simulated erviron-
ments.For arecentsuney, see’. Many efficientalgorithms
have been proposedfor collision detectionand distance
computationbetweencorvex polytopes? 10256 Someof
the recentalgorithmsfor fast collision detectionbetween
non-cowvex polyhedraandgeneralpolygonal modelsutilize
boundingvolumehierarchiesTheseinclude OBBTree!?, k-
dopst’, Boxtree3, Axis-alignedbourdingboxes’, ShellTree
18 Spheretree¥!, S-bounds? etc.Boundingvolumehierar
chieshave alsobeenusedfor global distancecompuation
23151119 Theresultingalgorithmsandsystemprovide real-
time performane for relatively small modelscomposedf
hundredsof thousals of polygors. Furthermoreall the hi-
erarchicabpprachesarememoryintensve, requiringmary
hundredsf bytespertriangleon average.

2.2. Managing Lar ge Datasets

Thereis considerale work on managng large datasetsor-
respondingto architecturalmodels, CAD models,terrain
modelsaswell visualizationdatasets.

For architecturamodels;Telleretal. propcsedtechniqles
to compue a spatialsubdvision of cells using a variant of
the k-D tree datastructure?’. After subdvision, cells and
portals are identified and usedfor visibility computation.
Basedonthis spatialrepresetation,Funkhowseretal.® con-
structan adjaceng graphover the leaf cells of the spatial
subdvision. As part of a runtime system,they only keepa
portion of the modelin main memorythatis visible from
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the currentobserer viewpoint or thatmight becomevisible
in future framesandusea pre-fetchingschemeTeller et al.
26 alsopropose an algorithmfor partitioningand ordering
large polygond ervironments for radiosity computatioss.
They usevisibility informationto partitionthe environmert
into subsetsand usethe orderinginformationto minimize
the numberof readsand writes. All thesealgorithmshave
beenappliedto architecturalmodelsonly. Bukowski and
Séquin? also usedvisibility preprocessingspatialdecom-
position and databasemanagemetntechniquesto integrate
architecturawalkthrough systemswith simulators(e.qg.fire
simulators).

For large CAD models Aliagaetal. ! partitionthe modd
into virtual cells. At run time they ensurethat the geome-
try andtextureinformationassociatavith the currentcell(s)
is in the main memoryand use pre-fetchingalgorithmsto
fetch neighbaing cells. Avila and Schroedel? use a dy-
namicloadingstratgy to load objectsandtheir LODs from
adatabaseCox andEllsworth8 have presentedpplication-
controlled demandpaging algorithmsfor visualizing large
CFDdatasets.

3. Overview

In this sectionwe give a brief overview of ourapproachWe
assumehatthe input modelis givento usasa collectionof
objects.For proximity compuations,we treateachobjectas
a primitive. In mary CAD ervironmernts, an “object" may
correspod to a collection of disjoint and non-overlappng
partswith similar functionality (e.g. all the steampipesor
all thewalkwaysin a power plant).

Designersof theseCAD environmentsmay imposecon-
straintson the proximity relationshipsof suchobjects.For
instancejt may be necessaryhatthe boundary of two ob-
jectsshouldnot overlap.In mary casesertainobjectsneed
to be separatedby a suficient distance.

In verifying the designconstraintsof an entire model,
one may needto perform collision detectionand proximity
computatios on all pairsof objects.In addition,aninterac-
tive systemmay be neededo corrector testthe placemen
of objects,with real time feedbackregarding the proxim-
ity relationshipsetweermoving andstaticobjects.Besides
databasenanagemet, our overall designgoalsinclude:

e Efficiency Testingthe entire model for overlapsshould
not significantly delay the design process.Moreover,
usercontrol of individua objectsand collision feedback
shouldrun atinteractve rates.

Automaticity The systemshoudn’t needhumaninterven-
tion or manualtweaking.It shoud be ableto automati-
cally handleamassie model.

Unstructued Datasets Thesystenshouldbeableto han-
dle modelswith no hierarchy structureor topologicalin-
formation.
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DynamicEnvironmentsBesidesnoving differentobjects,
theusermayinsertor deleteobjectsfrom the model.
Fixed Memory Cadhe Size The systemis given a fixed
memorycachesizeM. In practice M maybesmallerthan
thesizeof themodel(in termsof megabytes).

Ouroverallapproat is baseduponthelocal andpairwise
natureof collision detectionproblemandwe usebounding
volumehierarchiego accelerateheir compuation.In most
earliersystemsall theobjectsalongwith theirboundng vol-
umesareloadedinto the mainmemory However, eachindi-
vidual proximity testconsidersonly onepair of objectsata
time. Strictly speakingpnly thosetwo objectsmustactually
beresidentin mainmemorywhile that particularproximity
testis underway. This principle canbe carriedevenfurther,
to the point whereonly a single pair of boundng volumes
or polygonsmustbein memoryatatime, but suchextremes
may not be usefulin practice We encodeall of the proxim-
ity computationdor a simulationervironmentin anoverlap
graph thentraverseit to determinepreciselywhatdatawill
soonbe neededand shouldbe residentin main memoryat
ary time.

Database

Overlap
Graph

Partition Proximity
> & Refine > Queries
Granhs

Figure 2: Processing-arge GeometricDatabasedor Mas-
siveModds

Given the geometrydatabasef a massie modelthatis
larger than M, we first decompase eachobjectinto pieces
of bourdedsizewith k-D treesubdvision. Theresultingob-
jects are organizedinto a scenegraph and usedfor static
model verificationaswell asfor interactve designreview.
Nodesin the scenegraphare usedto constructan overlap
graph,a datastructureusedfor representingoroximity in-
formation. We useda numter of graph partitioning algo-
rithmsto compue localizedsubgraphk of the overlapgraph.
Thesesubgaphscorrespod to setsof objectssimultane-
ouslyloadedfrom thedisk for proximity testing.Thesystem
alsoemploys pre-fetchingtechniquesand performsproxim-
ity computatios on multiple processors.

4. Proximity Data Structures

In this section,we describeour pre-processinglgorithm
that automaticallyprocesesthe model and builds an over-
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Figure 3: An ervironmentconsistingof polygonsannadated
with axis-alignedbourding boxes. Figure 4 showsthe over-
lap graph construdedfromthis environment.

o

Figure 4: Theoverlap graph constructedromthe erviron-
mentin Fig. 3. Theedgesin this graph correspnd exactly
to overlaps betweerboundirg boxesn the original environ-
ment.

lap graph.We make useof several graphalgorithmsinclud-
ing graphpartitioningfor computinglocalizedsub-grajmsof
the overlapgraph andusethesefor orderingthe proximity
computatios, therebyattemptingo minimizethenumberof
diskaccesses.

4.1. Overlap Graph

We castthe sequene of proximity computationssthe pro-
cessingof anoverlapgraph.Eachnodein the overlapgraph
correspods to one of the objectsin the model,and edges
of the graphconnet the objectswhich may possiblyover-
lap, or comewithin therequiredtolerance Therefore each
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Figure 5: Two high-vdencenodes shownin black, are cho-
senand processedndividually to reducethe connectivityof
theoverlap graph. Thedisconnetednodesat right haveal-
readybeenprocessed

Figure 6: Multi-level graph partitioning sepaatestheover
lap graph into groups of nodes which fit entirely into the
memorycache

edgeindicatesa pair of objectsthatmustbe comparecdby a
proximity query

In the worst case,whereall objectsin the model over
lap all otherobjects the overlapgraphwould containO(V?)
edgeswhereV is the numbe of nodes.Fortunately such
configurationsare rarein large ervironmentscompased of
tensof thousand of objects We reducethe numberof prox-
imity teststhat must be performedat runtime by not in-
cluding in the overlap graph ary edges betweenobjects
known trivially notto comeinto contact.To accomplistthis,
we annotateeachnodewith the axis-alignedboundng box
(AABB) of its corresponihg object.Finally, we addedges
betweernthosenodeswhosebourding boxesoverlap.These
boundingboxescanbe computedwith asinglepassthrough
the databaseduring which eachobject is loaded exactly
onceand thenimmediatelydiscarded and the intersection
of anAABB with all otherscanbe found efficiently usinga
sortedlist of intervalsasin 7. As aresult,agivenpair of ob-
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Figure 7: Resolvingedgeswithin ead partition leavesa set
of edgeswhich form the cut graph, which is processedvith
thesamealgorithmsappliedto therestof theoverlapgraph

jectsin the modelmay interferewith eachotherif andonly
if thereis an edgebetweenthe correspading nodesin the
overlapgraph Figures3 and4 shav a simple ervironmert
andits corresponihg overlapgraph.

For toleranceverification,a pair of objectsarelinked by
anedgein theproximity graphwhentheir AABBs arewithin
thetoleranceTo malke useof theinterval sorting,we simply
addan offsetto eachAABB, sothatif the “offset AABBS”
donotoverlap,theoriginal AABBs will notcomewithin the
tolerance.

Furthermorewith eachnodeof the graphwe associate
weightthatcorrespondto thememoryrequiredoby abound-
ing volume hierarchyfor that object. This weight variesas
a linear function of the numberof polygors in the object,
andthe constan of proportionalityvariesbasedon the par
ticular boundingvolume(e.g.,sphere AABB or OBB). The
weightassociateavith any subgaphis computecdby adding
theweightsof all the nodesof thatsubgrap.

Our algorithm ordersthe proximity computatios man-
datedby edges of theoverlapgraphby computingsubgrajhs
that eachhave a weight lessthan the size of the memory
cache M. Objectsin the subgrafh areloadedinto memory
andthe pairs of objectslinked by an edgeare checled for
collisions.Oncetheresultfor anedgeis recordedthis edge
is removed from the overlapgraph.We call thesesubgrajns
localizedsubgiaphs They arecomputedo exploit memory
locality.

4.2. Static Environments

As previously stated,the edgesof the overlap graphspec-
ify objectpairsthatmay violate someof the proximity con-
straints.However, sinceonly a subsetof the entire models
objectsmayfit in the memorycacheat once,performingall
the queriesmay require repeatedoading of objectsfrom

disk. We presentan approachthat usesthe overlap graph
to orderthe proximity compuationsso that the objectsare
loadedfrom a disk asfew timesaspossible.

4.2.1. Computing ConnectedComponents

Separateonnectedcomponats of the overlapgraphcanbe
consideredn isolation,sinceobjectswhosenodesresidein

differentcompamentsneednever beloadedinto the memory
cachesimultaneouly. Furthermorejf a comporent of the
graphhasa total weight smallerthanthe size of the object
cache,all the objectsrepresentedby nodesof this compo-
nentmay be loadedinto the memorycacheat once,andall

querieswithin the conneted comporent performedwithout
ary furtherloadingof objects.

Conneted compon@tswhich aretoo large for the mem-
ory cachearehanded by threesub-algorithms:

1. DecomposingObjects: We decommseobjectswith high
polygoncourt into two or moresub-objets whosesizesare
eacha fixed fraction of the size of the memorycache.We
subdvide the geoméry of an objectusinga k-D tree con-
structedat the centersof its componeat polygons. This k-D
treesubdvision is compuedfrom building the scenegraph.
For eachsub-obect, we createa separatenodein the over-
lap graph.Eachhasa pointerto their parentobjectto avoid
redundahcomparisorbetweerthe samepair of objects.

2. SeparatelyHandling High ValenceNodes:We chocse
a setof nodeswith high valenceso that their total weight,
plusthe weightof any othernode in the comporent, is less
thanthe sizeof the memorycacheM. Fig. 5 shavs two such
high-valencenodes.

By swappingthe neighlors of thesenodesinto the mem-
ory cacheoneatatime, all the proximity computationsep-
resentecby edgesincidentto high valencenodesare eval-
uated.Theseedgescanthen be removed from the overlap
graph.Notethatthis stepcanbe performedby loadingeach
objectof acomporentonly once We deconposetheremain-
ing graphusingmulti-level partitioningalgorithms.

3. Multi-Level Graph Partitioning: This involves three
phasescoarsenig, partitioning,andorderingor uncoarsae-
ing 1316, To coarsenthe graph,we usethe weightsof the
verticesandensurehatthesizeof the partitionof thecoarse
graphis within a smallfactorof M. After coarseninga bi-
sectionof thismuchsmallergraphis computedandthenthis
partitioningis progressiely projectedcbackontotheoriginal
graph(the finer graph).At eachstepof the graphuncoars-
ening,thepartitionis furtherrefined.The overall processn-
volves:

e Coarsening Phase: The graph Gy is transformedinto
a sequene of smallergraphsGy, Gy, ...,Gm suchthat
[Vo| > [Va| > ... > |Vl

e Partitioning Phase:A 2-way partition Pm of the graph
Gm = (Vm,Em) is computedthat partitionsVm into two
parts,eachcontaininghalf the verticesof Gg.
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e Uncoarsening Phase: The partition Pn of Gm is pro-
jectedbackto Gg by goingthroughintermediatepartitions
Pm_1,Pm_2,.--,P1,Py. At eachof thesesteps,the parti-
tion is furtherrefinedashighlightedin 13. Sincethe finer
graphhasmoredegreesof freedom suchrefinementsisu-
ally decreasehe numbe of edgescrossingbetweenpar
titions.

Figure 6 shaws the resultsof suchpartitioningon a simple
graph.

Finally, the edgesthatlink objectsin differentpartitions,
andalongwith theincidentnodesform anew graphthatwe
call the cut graph. (SeeFig. 7.) We comptte its conrected

comporentsandrecursvely applythethreesub-algorithms.

Thisprocessingloesnotneedto beinterleavedwith prox-
imity queriesWe apply thesealgorithmsto precompte the
localizedsubgraps, whereeachsubgrajh correspadsto a
setof objectsthatwill beloadedinto memorytogether

Werepeathemuntil we candeconposetheoverlapgraph
into localizedsubgraps,Ly, Lo, ..., Lk, suchthattheweight
of eachsubgaphis lessthanM.

4.3. Runtime Ordering & Traversal

GiventhelocalizedsubgrasL;, we traversethemto check
their compment objects for proximity. The traversal is

rooted at the node with the greatestnumberof edgesand
proceedsn a breadth-firsfashion with neightoring nodes
visitedin descendig orderof theirvalences.

During traversal,object geometryand bounding-wlume
hierarchiesarecachedn mainmemory By looking aheado
the next few proximity teststo be performed(basedon the
graphrepresentation)ye areableto prefetchgeometryand
computebourding volumehierarchiesn advance.More de-
tails aboutthe proximity compuationsaregivenin Section
5. After the traversalof eachsubgraj terminatesmemory
usedby its componeh objectsis releasedo be reusedby
subseqanttraversals.

4.4. Overlap Graph in Dynamic Environments

In mary scenariospbjectsin amodelmaybe moved by the
useror new objectsmaybeaddel to or deletedfrom theen-
vironment.Theseobjectsaretreatedasfloatingnodesin the
overlapgraph For eachfloating node,we maintaina list of
potentialoverlapswith objectsin therestof theworld. These
lists are updaed and evaluaed eachtime the node moves.
Thepotential-aerlaplists aremaintainedusingAABBs and
a sweepand prunealgorithm similar to the onein 7 to ex-
ploit coherene betweertime steps Boundng volumehier
archiesfor pairsof objectson the potential-awerlaplists are
constructedazily andusedto evaluatethe proximity queries
correspoding to edgesn thelists.
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4.5. PrefetchingGeometry

The algorithm usestemporaland spatialcoherenceo pre-
fetch geoméry on one processr, while it is performing
guerieson the other processorskFor static ervironmerts, it

males useof the orderingspecifiedby the edgesof the lo-

calizedsubgrapsto pre-fetchobjectgeometryFor dynamic
objectsthealgorithmestimateshe velocitiesof moving ob-

jects. Basedon thesevelocitiesand the time interval used
for prediction,it expand the AABBs of maving objectsby

anappropiate offset. The algorithmpre-fetcheghe geome-
try correspadingto all the nodesoverlappingwith the “ex-

panded"AABBs.

5. Proximity Computations

In this section,we briefly describethe algorithmsbasedon

boundingvolumehierarchiesusedfor performingcollision,
distanceandtolerancetests.A numter of algorithmshave
beenproposedn theliteraturefor thesecomputationdased
on hierarchiesof bourding volumes.They vary basedon
the choiceof boundng volume,whetherthe treesare con-
structedin a top-davn or bottom-upmanne andthe order
of traversal(depth-firstor breadth-first)As aresult,the per

formanceof differentalgorithmsvariesin termsof speed,
storagerequirementsand robustnesson different models.
In our systemwe have provided support for threedifferent
boundingvolumes(spheresAABBs and OBBs) as part of

a genericframewvork whereone caneasilyintroducea new

boundingvolume.

Givenalargemodel,thetreeof tight-fitting boundng vol-
umesis constructedop-davn by recursvely subdviding a
group of primitives (polygons, triangles, etc.) using statis-
tics of vertex distribution, eigendeompositionandgeomet-
ric techniques 12. After tree-huilding, ary proximity test,
whethercollision detection,distancecomputationor toler
anceverification, proceedsy recursvely checkingbourd-
ing volumesfor the desiredqueries.If the parentbounding
volumes(BVs) fail thequery thenthe childrenof theseBVs
aretestedpairwise.If the childrensatisfy the query condi-
tion, thenthat recursionbranchterminates Otherwise the
recursve testcontinuesn a similar fashion.

If thequeryis collision detectionthenthequerycondition
is to checkBVs for overlap.If the queryis distancecompu-
tation, thenthe testcheckswhetherthe separatiorbetween
thecurrentBVs is greaterthanthe uppe bourd distanceat-
tainedsofar. Initially the uppe boundis setto the distance
betweerary two pointson the model.At eachnode,the al-
gorithm compuesthe distancebetweenall four cross-pairs
of childrennodesandrecursvely traversegheclosesipair of
nodesaftercomparingit with the globalminimumdistance.
Finally, if the queryis toleranceverification,thentherecur
sion terminateswhenthe BVs are separatedby more than
theuserspecifiedthresholdamourt.
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5.1. Choiceof Bounding Volumes

Our systemfor interactve proximity queriesalso allows
the userto selectfrom a paletteof desirableoptionsusing
compile-timeswitches.Theseswitchescontrol conditiond
compilationof the sourcecodeusingthe #if C++ compiler
directive to effectively specializethe codeto suit the needs
of applicationsThe basicsystempromptsthe userto make
application-depndentchoicesregardingthe boundingvol-
umetype, coordnatesystemfor updategnestedr flat) and
tree traversal scheme(breadth-first,depth-firstor priority-
directed) Defaultsareusedwhennoneis specified.

Thetype of boundirg volumesavailableincludespheres,
axis-alignedboundingboxes (AABBs) andorientedbound-
ing boxes (OBBs). This choiceaffects memoryusage tree
pruning and bounding volume overlap tests.The selection
of bourding volumeschangeslepeming onthe geometryof
the modelsusedin the applications.the natureof interac-
tionswith thevirtual ervironments contactfrequengesand
configurationsandthetype(s)of most-frequentlyerformed
proximity compuations.

5.2. Lazy Hierar chy Construction

The systemalso allows the userto have the treesof the
boundng volume hierarchiesbuilt on an as-neededasis.
Children of a nodeare construted just prior to beingvis-
ited. As aresult,only thoseportionsof the treeswhich get
visitedareactuallybuilt. For ashortsequaceof querieshis
canyield significanttime and storagesavings. Interaction
with a massve modelis oftenlocalizedto only a smallre-
gion of the model. For the hierarchyconstruction,we use
a top-davn approachbasedon the vertex distribution12 to
computetight-fitting bourding volumes.

6. Systemimplementation and Performance

In this section,we describethe implementationof our sys-
tem. Thisincludesa systemoverview, graphpartitioningal-
gorithms,andtheruntimesystenfor dynamicervironmerts.
We also highlight its performarme on a CAD model of a
coal-firedpower plantcompaedof 15 million triangles(as
shavn in Fig. 12). The modelcameto us asa collectionof
morethan18000bjectsor functiongrous with notopology
structureor hierarchyinformation.It occupieamorethan1.3
GB of disk space.

6.1. SceneGraph

Ourscenegraphcloselyresembleshatof IRIS Performep?.
Objectsare containedin the leaf nodesof the scenegraph
andeachinternalnodeis annotatedwith the boundng box
of all of its children. Eachof the roughly 1800 functiond
groupsfrom the original model becomesa subtreewhose
rootis agrandchildof therootof theentiregraph.Thedirect
childrenof therootaresimply containergor thesefunctiond
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groups.To quickly renderobjectsbeingchecledfor interfer
ence(aspartof aruntimesystem)we generatanultiple ge-
ometriclevels of detail (LODs) for mostobjects.TheLODs
arestoredin the scenegraphassiblingsof the original ge-
ometry They areonly usedfor renderingandnot proximity
queries.

6.2. Bounding Volume Hierar chies

Ourtestmodel,the coal-firedpower plant, consistsof mary

comple& piping structureshatareaxis-aligned Spheresre
not a good approximationfor this type of geometry Since
the usercanonly interactwith a small portion of the mas-
sive modelat a time (dueto sizedifferential), mostpart of

themassie modelcanbeassumedo be stationaryFurther

more, OBBs require more storagethan AABBs in general
and one of our goalsis to minimize the frequercy of disk
accessTherefore,we have usedAABBs as the bounding
volumesin performing querieson the power plant. To re-
ducethe memoryoverheadthe hierarchiesarenot fully tra-
versedduringinterferenceests,andwe usedlazy construc-
tion. Only theroot of thetreeis createdduringinitialization,

andconstructionof furtherlevelsis deferreduntil somein-

terferencdestaccessethem.

6.3. Graph Partitioning and Refinement

We appliedthe partitioning algorithm (composedof three
sub-algorithmspresentedn Sectiond to performproximity
gueriesbetweenobjectsin the power plant. The estimated
memoryusageper trianglewas 200 bytes(sincewe areus-
ing doule precisionarithmetic),including spaceo storethe
triangleitself andtheoverheacf AABB hierarchyconstruc-
tion. Thisallowedaconsevative choiceof objectcachesize,
given a particularmemorylimitation. For instance our tar
getmemorycachesize,M, was 160 Megabyteswhich cor
respondgo about800, 000triangles.

Objectdecommsition,or nodesplitting, duringthe graph
processingvasbasedon k-d treedecompsitionsof objects
in the scenegraph.Eachobjectwasdecommsedinto some
setof descendatsin its k-d tree,suchthateachdescendat
was no larger than one-tenthof the size of the cache,(i.e.
80,000 triangles).We useda public domainimplementa-
tion of amulti-level partitioningalgorithm,METIS 16, avail-
ablefrom the University of Minnesota.High valencenode
removal and partitioningwere appliedin alternation When
onesub-algorithmwasusedto decompseacompment,ary
resultingcompaentsstill largerthanthecachesizewerede-
composedy the othersub-algaithm. We found that using
thesesub-algeithmstogetheresultedn bettercacheutiliza-
tion thanonemethodalone.

6.3.1. Impact of CacheSize

Ourgraphpartitioningandrefinemenalgorithmstry to min-
imize thenumberof disk accessedNe appliedthe partition-
ing sub-algorithmsto the power plant model with several
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Figure 8: This graph highlights the data fetched from the
disk during graph partitioning and refinemenalgorithm as
a functionof cache size Whilea smallcache size(< 25K
polygors) resultsin a veryhigh numberof diskaccesseghe
algorithmis able to efficiently partition the modeland per
form proximity querieswith a cache sizeof 800K polygors.
Themodelis composeaf more than 15 million triangles.

differentcachesizes.In Fig. 8, we shav the numberof tri-
anglesloadedfrom the disk asa function of the cachesize.
For asmallcachefor 150K triangles(i.e. 30MB), we needto
load eachtriangle 60 timesfrom the disk on average How-
ever, with acache80K triangles(i.e. 160MB) weloadeach
triangle abou 4.2 timeson average.Notice that we would
otherwiseneedmore than 3.2GB to load the entire modd
andits boundng volumehierarchy

6.4. SystemPipeline

We have divided our systeminto threeseparatg@hasescol-
lide/proximity query render/drav, andprefetch,asshavn in
Fig. 9. The collide phaseis responsile for traversingthe
overlap graph, determiningwhich proximity computations
must be performed,and evaluatingthosetests.The render
phaselisplaystheobjectscurrentlybeingexamined Finally,
the prefetchphaseis responsike for looking aheadto tests
soonto be performedand retrieving from disk ary objects
thatarenot alreadyavailablein mainmemory

6.4.1. Collide Phase

The proximity queriesare performedduring the collide
phase We implementthis phaseastwo or more processes
oneto traversethe overlap graph,and one or more to per
form the proximity computatioss indicatedby the traversal
process.This allows us to take greateradvarntage of mul-
tiprocessorconfiguratiors. Eachindividud collide process
request®bjectdatafrom the prefetchphaseon demand.

Figure 9: Overviav of the Interactive Proximity Query Sys-
tem

6.4.2. PrefetchPhase
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Figure 10: This graph showsthe average time for a prox-
imity query along a samplepath. The proximity threshadd
correspors to the value usedfor toleranceverification. A
zeo valueindicatescollision.

Theprefetchphaseas responsibldor ensuringhatobjects
and renderales are available in main memory at the mo-
mentwhenthey areneededor renderingor proximity test-
ing. For staticervironmerts, thisis accomplishedby travers-
ing the overlap graphin exactly the samemanne as the
collide tasks,but stayinga few stepsaheadof the collide
testsandloadingthetwo objectsin eachtestinsteadof actu-
ally testingthem.Theseobjectsaremaintainedn amemory
cachewhosesizeM is givenasa parameteto thegraphpar
titioning and refinementprocedues. To take advantag of
thelocalizednatureof our method this cacheis maintained
with aleast-lecently-usd eviction policy. We implementthe
prefetchphaseasa single,free-runningprocesghataccepts
requestdor objectsfrom the renderandcollide phasesand
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providesaccesso the contents of themodelcachelf apar MB. The performanceof the algorithm along some sam-
ticularmodelis accessebeforeit hasbeenioadedirom disk, ple pathsis shavn in Graph10 and 11. Color platesll-IV
therequesis blocked until the datais available.

6.4.3. Render Phase

The renderphasedisplayson-screenthe two objectscur-
rently beingchecled for collision or proximity. Particularly

shov somesnapshotérom our systemMoviesshaving live
footageof our systemin operationaswell asa pre-rendered
zoomonthepaower plantmodelcanbedownloadcedfrom the
following URL:

http://www.cs.unc.edu/"geom/mrhc

in a massve model, it is possiblefor objectsto be large
enoudh thatrenderinghemmaybesignificantlyslower than

performinga proximity testbetweenthem.For this reason, 7. Conclusionand Future Work

we maydisabletherendemphasenvhendealingwith astrictly ) )
staticervironment.Onepossibilityis to runthecollisionand In this papenwe have presentedinalgorithmandasysterrto
renderingtasksasyndironously;however, that canresultin performproximity computationsatinteractie rateson mas-
raceconditions.n adynamicervironment, therendemphase ~ SVe models.As part of pre-procesing, our algorithm au-
drivesthe restof the compttation. During eachframe, the tomatically computesproximity datastructuresin termsof
renderphasequickly traversesthe scenegraphto find ob- overlap graphsand localizedsub-graps and tries to mini-
jects which might overlap or might soon overlap dynamic mizethenumkber of disk accessedNVe usebourding volume
objectsunde the users control. We do not even attemptto hierarchiesto accelerateproximity queriesand presental-
renderdistantobjectsin this systemAny necessarproxim- gorlthmsthat load a small arld local subsetof the m.odel in
ity queriesaredispatchedo collide tasks andary necessary ~ themain memory We have implementedour algorithmas
dataarerequestedrom the prefetchtask.As soonasthere- a systemcalled IMMPACT and usedit to perform simple
sults of the proximity queriesare available, the objectsfor interactionswith the modelof a coal-firedpowerplant com-
the currentframearedrawn to indicatewhetheror not they posedof 15 million triangleswith a memorycachesize of
participatein aoverlap.Weimplementthe renderphaseasa 160 MB. We believe that our algorithm and systemscale
singletaskin orderto avoid costlyOpenGLcontext switches ~ Well with themodelsize.In termsof applicationdomain, it

duringrendering.
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Figure 11: Time spentbetweerthe collision phaseandren-

Breakdown of time per frame

canperformproximity querieson modelscomposedf tens
of millions of polygors at interactie rates.Earlier systems
for collision detectionandtoleranceverificationcould only
handlemodds compo®d of hundred of thousadsof poly-

gonsatinteractve rates.

Therearemary avenuesfor future work. We would like

to perform more comple interactiontasksusing our sys-

PO A A

tem. Marny designersareinterestedn automaticplacement
:|—cmnde mase| Of parts,given sometoleranceconstraintsWe would like to
—=Render I s@robot motion planningalgorithmsfor computingcolli-

sion free configurdions and paths.Finally, we would com-
binethis systemwith aninteractve massie modelrendering

system! andusethemfor simulation-basedesignapplica-

tions.

NNNNNNNNNN

Frame number

dering phasefor a samplepath

6.5. Performance

The systemhas beenusedto perform a numberof static

mmmmmmmm

8. Acknowledgement

We aregratefulto Stefan Gottschalkfor providing uswith a
frameawork to implementdifferentbourding volumehierar
chies!t, TheIMMPACT systemis build ontopof thatframe-
work. We arealsoalsogratefulto JamesCloseandComlus-
tion Engineeringinc. for providing us with the modelof a

: L . power plant.

anddynamicproximity querieson the power plant models.

Theseinclude finding all interferencesor objectswithin a Supportedn partby ARO ContractDAAH04-96-1-0257,
tolerancethreshold We controlled the motion of a avatar NSFCareerAward CCR-96252%, ONR Younglnvestigator
modeledwith 4,000 triangles,and were able to interac- Award (N00014-9-1-0631),NIH/National Centerfor Re-
tively performcollision detectionandtoleranceverification searchResourcesAward 2P41RR02T0-13 on Interactve
queriesin a few millisecondson a SGI Infinite Reality with Graphicsfor Molecuar Studiesand Microscopy, an NSF
four 195MHz processorandusinga memorycacheof 160 GraduateResearchrellowship,andintel.

B45



Appearel in Proc.of Eurographts1999

References

1.

10.

11.

12.

13.

Aliaga etal. A framework for real-timewalkthroudhs
of massve models. TechnicalReportTR98-013,De-
partmentof Computer Science,University of North
Carolina,1998

Lisa SobierajskiAvila andWilliam SchroederInterac-
tive visualizationof aircraftand power generatioren-
gines.In RoniYagelandHansHagen editors |EEE -
sualizationé?, pagesA83-486.IEEE,November1997.

G. BarequetB. Chazelle,L. Guibas,J. Mitchell, and
A. Tal. Boxtree:A hierarchicalrepresentatiomf sur
facesin 3d. In Proc. of Eurographics’96, 1996.

Richard Bukowski and Carlo H. Séquin. Interactive
simulationof fire in virtual building ervironments. In
SIGGRAPHI7 ConfeenceProceedingspages35—44
1997.

S. Cameron.Approximationhierarchiesands-bound.
In Proceedings Symposiunon Solid Modeling Foun-
dationsand CAD/CAM Applications pages129-137,
Austin, TX, 1991.

StepherCameronA comparisorof two fastalgorithms
for computing the distancebetweencorvex polyhe-
dra. IEEE Transactionson Roboticsand Automation
13(6):955-92Q December1996.

J. Cohen,M. Lin, D. Manoca, and M. Ponamgi. I-
collide: An interactve andexactcollisiondetectiorsys-
tem for large-scaleervironments. In Proc. of ACM
Interactive 3D Graphics Confeence pages 189-196,
19%.

Michad B. Cox and David Ellsworth. Application-
controlled demandpaging for Out-of-Corevisualiza-
tion. In Roni YagelandHansHagen editors,|IEEE \f-
sualization97, pages235-244.[EEE, November1997,

T. Funkhowser C. Sequin,andS. Teller. Managment
of large amourts of datain interactve building walk-
throudhs.
on Interactive3D Graphics) volume25, pagesl1-2Q
1992.

E. G. Gilbert,D. W. Johrson,andS. S. Keerthi. A fast
procedire for compuing the distancebetweenobjects
in three-dimensionadpace.|EEE J. Roboticsand Au-
tomation vol RA-4:193-23,1988.

S. Gottschalk. Collision Queries using Oriented
Boundng Boxes PhDthesis,University of North Car
olina. Departmenbf ComputerScience,1999.

S. Gottschalk,M. Lin, andD. Manocta. Obb-tree:A
hierarchicalstructurefor rapid interferencedetection.
In Proc. of ACM Siggraph96, pagesl71-180,1996

B. HendricksonandR. Leland. A multi-level algorithm

In ComputerGraphics (1992 Symposium

B46

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

27.

for partitioning graphs. TechnicalReport SAND93-
1301,SandiaNationalLaboratory 1993

P. M. Hubbad. Interactie collision detection.In Pro-
ceedingof IEEE Symposiunon Reseath Frontiersin
Mirtual Reality October1993

D. Johrsonand E. Cohen. A framawvork for efficient
minimum distancecomputation. IEEE Confeenceon
Roboticsand Automation pages3678-3683 1998.

G. KarypisandV. Kumar A fastandhigh quality mul-
tilevel schemefor partitioningirregular graphs. SIAM
Journd on ScientificComputing pages269-218, 1996.

J. Klosowski, M. Held, J.S.B Mitchell, H. Sawizral,
andK. Zikan. Efficientcollision detectionusingbourd-
ing volume hierarchiesof k-dops. In Siggraph96 M-
sualProceedingspagel51, 1996.

S.Krishnan M. Gopi, M. Lin, D. Manocha,andA. Pat-
tekar Rapid and accuratecontactdeterminationbe-
tweenspline modelsusing shelltrees. In Proc. of Eu-
rographics’98, 1998. To appea.

E. Larsen,S. Gottschalk,M. Lin, and D. Manoda.
Sweptspherevolumesfor fastproximity queries.Tech-
nical ReportTR99-018,Departmenf ComputerSci-
ence University of North Carolina,1999.

M. Lin andS. Gottschalk.Collision detectionbetween
geometricmodels:A suney. In Proc. of IMA Confer
enceon Mathematicof Surfaes 1998

M.C. Lin andJohnF. Canry. Efficient algorithmsfor
incrementatistancecomputationIn IEEE Confeence
on Roboticsand Automation pagesl008-1014,1991

Brian Mirtich. V-Clip: Fast and robust polyhedral
collision detection. ACM Transactionson Graphics
17(3):177208,July 1998.

S. Quinlan. Efficient distancecomputationbetween
non-comvex objects. In Proceedingsof Internatioral
Confeenceon Roboticsand Automation pages3324—
3329,1994.

. J.Rohlf andJ. Helman. Iris performer:A high perfor

mancemultiprocessotoolkit for realtime3d graphics.
In Proc. of ACM Siggraph, pages381-394,1994

R. Seidel.Linearprogrammimg andcorvex hulls made
easy In Proc. 6th Ann.ACM Conf on Computatiorl
Geometrypages211-215, Berkelgy, California,199Q

S. Teller, C. Fowler, T. Funkhaiser and P. Hanrahan.
Partitioningandorderinglarge radiositycompuations.
In Andrew Glassnereditor, Proceeding®f SIGGRAPH
'94, pagesA43-460. ACM SIGGRARH, 199%.

S. J. Teller. Msibility Computatios in DenselyOc-
cludedPolyheral Ervironments PhD thesis,CS Divi-
sion,UC Berkeley, 1992.



Appearel in Proc.of Eurographts 1999

Figure 12: CAD modelof a coal-fired powerpant with more
than 15 million triangles. The modelconsistsof more than
18000bjectsandtakesmore than 1.3GBon disk.
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Figure 13: Proximity queriesbetweenan avatar and the
powerplantmodel. IMMPACT takes a few millisecondsto
performthesequeries.
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Figure 14: Interactivecollision detectionbetweera moving
objectsand pipesin the powerplar.



