
Appeared in Proc.of Eurographics1999

Part itioning and Handling MassiveModels for Interact ive
Collision Detection

A. Wilson andE. LarsenandD. ManochaandM. C. Lin

Departmentof ComputerScience,TheUniversityof North Carolina,Chapel Hill, NC 27599-3175
http://www.cs.unc.edu/˜geom/MMC/

Abstract
We describean approach for interactivecollision detectionandproximitycomputations on massivemodelscom-
posedof millions of geometricprimitives.We addressissuesrelatedto interactivedata accessand processing
in a large geometricdatabase, which maynot fit into main memoryof typical desktopworkstationsor comput-
ers. We present a new algorithm usingoverlap graphsfor localizing the “r egionsof interest" within a massive
model,thereby reducing runtimememoryrequirements. Theoverlap graph is computedoff-line, pre-processed
usinggraph partitioning algorithms,and modifiedon the fly as needed.At run time, we traverselocalizedsub-
graphs to check thecorrespondinggeometry for proximityandpre-fetch geometryandauxiliary datastructures.
To performinteractiveproximityqueries,weusebounding-volumehierarchiesandtake advantage of spatialand
temporal coherence. Basedon theproposedalgorithms,wehavedevelopeda systemcalled IMMPACT andused
it for interactionwith a CAD modelof a powerplant consistingof over 15 million triangles.We are able to per-
form a numberof proximity queriesin real-timeon such a model.In termsof modelcomplexity and application
to large models,wehaveimprovedtheperformanceof interactivecollision detectionandproximitycomputation
algorithmsby anorderof magnitude.

1. Intr oduction

The currenttechnology for virtual and immersive environ-
mentsoffers us greatpotentialfor usein industrialconcept
designand evaluation.It can provide a designspacecon-
sistingof three-dimensional computergeneratedimagesand
theuserscaninteractwith themusingintuitive interfacesin
real-time.Such technology is increasingly being usedfor
simulation-baseddesignand multi-disciplinary reviews of
largeCAD modelscomposed of millions of primitives(e.g.
submarines,airplanes,power plants,etc.).A key component
of suchenvironments is the ability to directly perceive and
manipulatevirtual objectsinteractively, ratherthan simply
viewing a passive environment. This may involve interac-
tionslikegrabbinganobjectandmoving it aroundthevirtual
environment using naturaland physicalmotion. For many
CAD applications,the designerswould alsolike to testfor
accessibilityof partsandfeasibilityof theentiredesign.Fur-
thermore,it shouldbepossibleto reach,manipulateandex-
tract nearlyany given part of the model for inspectionand
repair. Any suchsystemfor designandevaluationof mas-
sivemodelsneedsthecapabilityto performinteractivecolli-

siondetectionandproximity computationsbetweenrealand
virtual objects.Theseincludecheckingtwo or moreobjects
for overlap.

A numberof algorithmshavebeenproposedfor perform-
ing proximity computationsongeometricmodels.Thecom-
monly usedalgorithmsutilize bounding volumehierarchies
to acceleratethesequeries.However, no good algorithms
are known for partitioning massive modelsautomatically,
computingbalancedhierarchies,and ordering the queries.
Furthermore,thesehierarchiesrequireconsiderablestorage.
For example,someof the recentlyproposedboundingvol-
umesfor fastcollisiondetection(e.g.OBBs3� 12, k-DOPs17,
sphericalshells18) requiremany hundredsof bytesper tri-
angleonaverage.For amodelcomposed of 15million trian-
gles,suchhierarchieswill needmany gigabytesof memory,
muchmorethanthe availablemain memoryon even high-
endgraphicssystems.As aresult,earlieralgorithmsandthe
resultingsystemscan only handlerelatively small models
composedof hundredsof thousandsof polygonsat interac-
tive rates.They are insufficient to handlemassive models
composedof severalmillions of polygons.Thismakesit dif-

B37

Appeared in Proc.of Eurographics1999

Figure 1: Interactivecollision detection& toleranceverifi-
cationbetweena userandthepipesin thepowerplant

ficult to achieve real-timeinteractionwith massive models
for virtual prototypingapplications.

Main contributions: Wepresentanew algorithmfor per-
forming interactive collision detectionandproximity com-
putationson massive modelswith a relatively small and
boundedmemoryfootprint. We introducetheconceptof an
overlap graph anduseit to exploit locality of computation.
For a largemodel,thealgorithmautomaticallycomputesthe
proximity informationbetweenobjectsandrepresentsit us-
ing anoverlapgraph.Theoverlapgraphis computedoff-line
and pre-processedusing graphpartitioning,object decom-
positionandrefinementalgorithms.At run time we traverse
localizedsub-graphs,order the computationsto check the
corresponding geometryfor proximity tests,and pre-fetch
geometryandassociatedhierarchicaldatastructures.To per-
form interactive proximity computationsin dynamicenvi-
ronments,we use the bounding-volume-hierarchies,mod-
ify the localized sub-graph(s) on the fly, and take advan-
tageof spatialandtemporalcoherence.The resultingalgo-
rithms have beenimplementedaspart of a system,IMM-
PACT (Interactive Massive Model Proximity andCollision
Tester),usedfor interactive proximity computations on a
CAD modelof a coal-firedpower plant,composed of over
15 million triangles.The model itself takes about1 � 3 GB
of disk space.In practice,we areableto performproximity
computations in a few millisecondson a SGI Infinite Real-
ity with 195MHz R10000processorsanda memorycache
sizeof 160MB. In Fig. 1, weshow asnapshot from oursys-
temwhereit interactively detectscollisionsbetweentheuser
andthe pipesin the power plant. In termsof applicationto
massive models,we improve theperformanceof interactive
collision detectionalgorithmsby almostanorderof magni-
tude.

Our algorithmsandsystemimplementationdescribedin
this paperhave beenspecializedfor interactive proximity
querieson massive modelsfor real-timeinteraction.How-
ever, the overall approachand algorithmic techniquesare
generalenoughto be applicable to other interactive opera-
tionsthatrequireprocessingandaccessingof largegeomet-
ric or spatialdatabasesof complex 3D environments.

Organization: The restof this paperis organizedas fol-
lows.In Section2 webriefly survey relatedwork onproxim-
ity queriesandmanagementof large geometricdatasets.In
Section3 we give anoverview of our approachanddescribe
algorithmsto build proximity datastructuresin Section4.
In Section5 we presentalgorithmsfor interactive proximity
queriesgiventhelocalizedsub-graphsfor bothstaticanddy-
namicqueries.Finally, in Section6, wedescribeoursystem,
IMMPACT, andhighlight its performance.

2. RelatedWork

In this section,we briefly survey relatedwork on collision
detectionandproximity computationsaswell astechniques
for managing andpartitioninglargegeometric datasets.

2.1. Collision Detectionand Proximity Computations

The problemsof collision detection,contactdetermination
anddistancecomputationhave beenextensively studiedin
computationalgeometry, robotics and simulatedenviron-
ments.For a recentsurvey, see20. Many efficientalgorithms
have been proposedfor collision detection and distance
computationbetweenconvex polytopes21� 10� 25� 6. Someof
the recentalgorithmsfor fast collision detectionbetween
non-convex polyhedraandgeneralpolygonal modelsutilize
boundingvolumehierarchies.TheseincludeOBBTree12, k-
dops17, Boxtree3, Axis-alignedboundingboxes7, ShellTree
18, Spheretrees14, S-bounds,5 etc.Boundingvolumehierar-
chieshave alsobeenusedfor global distancecomputation
23� 15� 11� 19. Theresultingalgorithmsandsystemprovide real-
time performance for relatively small modelscomposedof
hundredsof thousandsof polygons.Furthermore,all thehi-
erarchicalapproachesarememoryintensive,requiringmany
hundredsof bytespertriangleon average.

2.2. Managing Lar geDatasets

Thereis considerable work on managing largedatasetscor-
respondingto architecturalmodels,CAD models, terrain
modelsaswell visualizationdatasets.

For architecturalmodels,Telleretal.proposedtechniques
to compute a spatialsubdivision of cells usinga variantof
the k-D tree datastructure27. After subdivision, cells and
portals are identified and usedfor visibility computation.
Basedonthisspatialrepresentation,Funkhouseretal.9 con-
structan adjacency graphover the leaf cells of the spatial
subdivision. As part of a runtimesystem,they only keepa
portion of the model in main memorythat is visible from

B38

Appeared in Proc.of Eurographics1999

thecurrentobserver viewpoint or thatmight becomevisible
in futureframesandusea pre-fetchingscheme.Teller et al.
26 alsoproposed an algorithmfor partitioningandordering
large polygonal environments for radiosity computations.
They usevisibility informationto partitiontheenvironment
into subsetsand usethe orderinginformation to minimize
the numberof readsandwrites. All thesealgorithmshave
beenapplied to architecturalmodelsonly. Bukowski and
Séquin4 alsousedvisibility preprocessing, spatialdecom-
position and databasemanagement techniques to integrate
architecturalwalkthrough systemswith simulators(e.g.fire
simulators).

For largeCAD models,Aliagaet al. 1 partitionthemodel
into virtual cells. At run time they ensurethat the geome-
try andtextureinformationassociatewith thecurrentcell(s)
is in the main memoryand usepre-fetchingalgorithmsto
fetch neighboring cells. Avila and Schroeder2 use a dy-
namicloadingstrategy to loadobjectsandtheir LODs from
a database.Cox andEllsworth 8 have presentedapplication-
controlleddemandpagingalgorithmsfor visualizing large
CFDdatasets.

3. Overview

In thissection,wegiveabrief overview of ourapproach. We
assumethattheinput modelis givento usasa collectionof
objects.For proximity computations,we treateachobjectas
a primitive. In many CAD environments, an “object" may
correspond to a collection of disjoint and non-overlapping
partswith similar functionality (e.g.all the steampipesor
all thewalkways in a power plant).

Designersof theseCAD environmentsmay imposecon-
straintson the proximity relationshipsof suchobjects.For
instance,it may be necessarythat the boundary of two ob-
jectsshouldnot overlap.In many casescertainobjectsneed
to beseparatedby a sufficient distance.

In verifying the designconstraintsof an entire model,
onemay needto performcollision detectionandproximity
computations on all pairsof objects.In addition,aninterac-
tive systemmay be neededto corrector testthe placement
of objects,with real time feedbackregarding the proxim-
ity relationshipsbetweenmoving andstaticobjects.Besides
databasemanagement, our overall designgoalsinclude:

� Efficiency: Testingthe entire model for overlapsshould
not significantly delay the design process.Moreover,
usercontrol of individual objectsandcollision feedback
shouldrun at interactive rates.

� Automaticity: Thesystemshouldn’t needhumaninterven-
tion or manualtweaking.It should be able to automati-
cally handleamassive model.

� UnstructuredDatasets: Thesystemshouldbeableto han-
dle modelswith no hierarchy, structureor topologicalin-
formation.

� DynamicEnvironments: Besidesmoving differentobjects,
theusermayinsertor deleteobjectsfrom themodel.� Fixed MemoryCache Size: The systemis given a fixed
memorycachesizeM. In practice,M maybesmallerthan
thesizeof themodel(in termsof megabytes).

Ouroverallapproach is baseduponthelocalandpairwise
natureof collision detectionproblemandwe usebounding
volumehierarchiesto acceleratetheir computation.In most
earliersystems,all theobjectsalongwith theirbounding vol-
umesareloadedinto themainmemory. However, eachindi-
vidual proximity testconsidersonly onepair of objectsat a
time.Strictly speaking,only thosetwo objectsmustactually
beresidentin mainmemorywhile thatparticularproximity
testis underway. This principlecanbecarriedevenfurther,
to the point whereonly a singlepair of bounding volumes
or polygonsmustbein memoryata time,but suchextremes
maynot beusefulin practice.We encodeall of theproxim-
ity computationsfor asimulationenvironmentin anoverlap
graph, thentraverseit to determinepreciselywhatdatawill
soonbe neededandshouldbe residentin main memoryat
any time.

Database
Scene
Graph

Overlap
Graph

Partition
& Refine
Graphs

Proximity
Queries

Figure 2: ProcessingLarge GeometricDatabasesfor Mas-
siveModels

Given the geometrydatabaseof a massive model that is
larger than M, we first decomposeeachobject into pieces
of boundedsizewith k-D treesubdivision.Theresultingob-
jects are organizedinto a scenegraphand usedfor static
modelverificationaswell as for interactive designreview.
Nodesin the scenegraphareusedto constructan overlap
graph,a datastructureusedfor representingproximity in-
formation. We useda number of graph partitioning algo-
rithmsto compute localizedsubgraphsof theoverlapgraph.
Thesesubgraphscorrespond to setsof objectssimultane-
ouslyloadedfrom thedisk for proximity testing.Thesystem
alsoemploys pre-fetchingtechniquesandperformsproxim-
ity computationson multiple processors.

4. Proximity Data Structur es

In this section,we describeour pre-processingalgorithm
that automaticallyprocessesthe modelandbuilds an over-

B39

Appeared in Proc.of Eurographics1999

Figure 3: An environmentconsistingof polygonsannotated
with axis-alignedbounding boxes.Figure 4 showstheover-
lap graphconstructedfromthis environment.

Figure 4: Theoverlap graph constructedfromtheenviron-
mentin Fig. 3. Theedges in this graph correspond exactly
to overlapsbetweenbounding boxesin theoriginal environ-
ment.

lap graph.We make useof severalgraphalgorithmsinclud-
ing graphpartitioningfor computinglocalizedsub-graphsof
the overlapgraph, andusethesefor orderingthe proximity
computations,therebyattemptingto minimizethenumberof
disk accesses.

4.1. Overlap Graph

We castthesequenceof proximity computationsasthepro-
cessingof anoverlapgraph.Eachnodein theoverlapgraph
corresponds to oneof the objectsin the model,and edges
of the graphconnect the objectswhich may possiblyover-
lap, or comewithin the requiredtolerance.Therefore,each

Figure5: Twohigh-valencenodes, shownin black, are cho-
senandprocessedindividually to reducetheconnectivityof
theoverlapgraph.Thedisconnectednodesat right haveal-
readybeenprocessed.

Figure6: Multi-levelgraph partitioning separatestheover-
lap graph into groupsof nodes which fit entirely into the
memorycache.

edgeindicatesa pair of objectsthatmustbecomparedby a
proximity query.

In the worst case,whereall objectsin the model over-
lapall otherobjects,theoverlapgraphwould containO

�
V2 �

edges,whereV is the number of nodes.Fortunately, such
configurationsare rare in large environmentscomposedof
tensof thousandsof objects.Wereducethenumberof prox-
imity teststhat must be performedat runtime by not in-
cluding in the overlap graph any edges betweenobjects
known trivially not to comeinto contact.To accomplishthis,
we annotateeachnodewith the axis-alignedbounding box
(AABB) of its corresponding object.Finally, we addedges
betweenthosenodeswhosebounding boxesoverlap.These
boundingboxescanbecomputedwith asinglepassthrough
the database,during which eachobject is loadedexactly
onceand then immediatelydiscarded,and the intersection
of anAABB with all otherscanbefoundefficiently usinga
sortedlist of intervalsasin 7. As a result,agivenpair of ob-

B40

Appeared in Proc.of Eurographics1999

Figure7: Resolvingedgeswithin each partition leavesa set
of edgeswhich form thecut graph,which is processedwith
thesamealgorithmsappliedto therestof theoverlapgraph.

jectsin themodelmay interferewith eachotherif andonly
if thereis an edgebetweenthe corresponding nodesin the
overlapgraph. Figures3 and4 show a simpleenvironment
andits corresponding overlapgraph.

For toleranceverification,a pair of objectsarelinked by
anedgein theproximity graphwhentheirAABBs arewithin
thetolerance.To make useof theinterval sorting,wesimply
addanoffset to eachAABB, so that if the “offsetAABBs”
donotoverlap,theoriginalAABBs will notcomewithin the
tolerance.

Furthermore,with eachnodeof thegraphwe associatea
weightthatcorrespondsto thememoryrequiredby abound-
ing volumehierarchyfor that object.This weight variesas
a linear function of the numberof polygons in the object,
andthe constant of proportionalityvariesbasedon thepar-
ticular boundingvolume(e.g.,sphere,AABB or OBB). The
weightassociatedwith any subgraphis computedby adding
theweightsof all thenodesof thatsubgraph.

Our algorithm ordersthe proximity computations man-
datedby edgesof theoverlapgraphby computingsubgraphs
that eachhave a weight lessthan the size of the memory
cache,M. Objectsin thesubgraph areloadedinto memory,
and the pairsof objectslinked by an edgearechecked for
collisions.Oncetheresultfor anedgeis recorded,this edge
is removedfrom theoverlapgraph.We call thesesubgraphs
localizedsubgraphs. They arecomputedto exploit memory
locality.

4.2. Static Envir onments

As previously stated,the edgesof the overlapgraphspec-
ify objectpairsthatmayviolatesomeof theproximity con-
straints.However, sinceonly a subsetof the entiremodel’s
objectsmayfit in thememorycacheat once,performingall
the queriesmay require repeatedloading of objectsfrom

disk. We presentan approachthat usesthe overlap graph
to orderthe proximity computationsso that the objectsare
loadedfrom a disk asfew timesaspossible.

4.2.1. Computing ConnectedComponents

Separateconnectedcomponentsof theoverlapgraphcanbe
consideredin isolation,sinceobjectswhosenodesresidein
differentcomponentsneednever beloadedinto thememory
cachesimultaneously. Furthermore,if a component of the
graphhasa total weight smallerthanthe sizeof the object
cache,all the objectsrepresentedby nodesof this compo-
nentmay be loadedinto the memorycacheat once,andall
querieswithin theconnectedcomponentperformedwithout
any furtherloadingof objects.

Connectedcomponentswhich aretoo largefor themem-
ory cachearehandled by threesub-algorithms:

1. DecomposingObjects: Wedecomposeobjectswith high
polygoncount into two or moresub-objectswhosesizesare
eacha fixed fraction of the sizeof the memorycache.We
subdivide the geometry of an objectusinga k-D treecon-
structedat thecentersof its component polygons.This k-D
treesubdivision is computedfrom building thescenegraph.
For eachsub-object, we createa separatenodein the over-
lap graph.Eachhasa pointerto their parentobjectto avoid
redundant comparisonbetweenthesamepair of objects.

2. SeparatelyHandling High ValenceNodes:We choose
a setof nodeswith high valenceso that their total weight,
plus the weightof any othernode in the component, is less
thanthesizeof thememorycacheM. Fig. 5 shows two such
high-valencenodes.

By swappingtheneighborsof thesenodesinto themem-
ory cacheoneat a time,all theproximity computationsrep-
resentedby edgesincident to high valencenodesareeval-
uated.Theseedgescan thenbe removed from the overlap
graph.Notethatthis stepcanbeperformedby loadingeach
objectof acomponentonly once.Wedecomposetheremain-
ing graphusingmulti-level partitioningalgorithms.

3. Mul ti-Level Graph Partitioning: This involves three
phases:coarsening, partitioning,andorderingor uncoarsen-
ing 13� 16. To coarsenthe graph,we usethe weightsof the
verticesandensurethatthesizeof thepartitionof thecoarse
graphis within a small factorof M. After coarsening,a bi-
sectionof thismuchsmallergraphis computed,andthenthis
partitioningis progressively projectedbackontotheoriginal
graph(the finer graph).At eachstepof the graphuncoars-
ening,thepartitionis furtherrefined.Theoverallprocessin-
volves:
� Coarsening Phase: The graph G0 is transformedinto

a sequence of smaller graphsG1 � G2 � ����� � Gm such that�
V0
�
	��

V1
�
	 ����� 	��

Vm
�
.

� Partitioning Phase:A 2-way partition Pm of the graph
Gm

�
Vm � Em

� is computedthat partitionsVm into two
parts,eachcontaininghalf theverticesof G0.

B41

Appeared in Proc.of Eurographics1999

� Uncoarsening Phase: The partition Pm of Gm is pro-
jectedbackto G0 by goingthroughintermediatepartitions
Pm� 1 � Pm� 2 � ����� � P1 � P0. At eachof thesesteps,the parti-
tion is further refinedashighlightedin 13. Sincethefiner
graphhasmoredegreesof freedom,suchrefinementsusu-
ally decreasethenumber of edgescrossingbetweenpar-
titions.

Figure6 shows the resultsof suchpartitioningon a simple
graph.

Finally, theedgesthat link objectsin differentpartitions,
andalongwith theincidentnodes,form anew graphthatwe
call the cut graph. (SeeFig. 7.) We compute its connected
componentsandrecursively applythethreesub-algorithms.

Thisprocessingdoesnotneedto beinterleavedwith prox-
imity queries.We apply thesealgorithmsto precompute the
localizedsubgraphs,whereeachsubgraph correspondsto a
setof objectsthatwill beloadedinto memorytogether.

Werepeatthemuntil wecandecomposetheoverlapgraph
into localizedsubgraphs,L1 � L2 � ����� � Lk, suchthattheweight
of eachsubgraphis lessthanM.

4.3. Runtime Ordering & Traversal

GiventhelocalizedsubgraphsLi, we traversethemto check
their component objects for proximity. The traversal is
rootedat the nodewith the greatestnumberof edgesand
proceedsin a breadth-firstfashion, with neighboring nodes
visitedin descending orderof their valences.

During traversal,objectgeometryandbounding-volume
hierarchiesarecachedin mainmemory. By lookingaheadto
the next few proximity teststo be performed(basedon the
graphrepresentation),we areableto prefetchgeometryand
computebounding volumehierarchiesin advance.More de-
tails abouttheproximity computationsaregiven in Section
5. After the traversalof eachsubgraph terminates,memory
usedby its component objectsis releasedto be reusedby
subsequenttraversals.

4.4. Overlap Graph in Dynamic Envir onments

In many scenarios,objectsin a modelmaybemovedby the
useror new objectsmaybeadded to or deletedfrom theen-
vironment.Theseobjectsaretreatedasfloatingnodesin the
overlapgraph. For eachfloatingnode,we maintaina list of
potentialoverlapswith objectsin therestof theworld.These
lists areupdated andevaluated eachtime the nodemoves.
Thepotential-overlaplistsaremaintainedusingAABBs and
a sweepandprunealgorithmsimilar to the one in 7 to ex-
ploit coherence betweentime steps.Bounding volumehier-
archiesfor pairsof objectson thepotential-overlaplists are
constructedlazily andusedto evaluatetheproximity queries
corresponding to edgesin thelists.

4.5. PrefetchingGeometry

The algorithmusestemporalandspatialcoherenceto pre-
fetch geometry on one processor, while it is performing
querieson the otherprocessors.For staticenvironments, it
makesuseof the orderingspecifiedby the edgesof the lo-
calizedsubgraphsto pre-fetchobjectgeometry. For dynamic
objects,thealgorithmestimatesthevelocitiesof moving ob-
jects.Basedon thesevelocitiesand the time interval used
for prediction,it expands theAABBs of moving objectsby
anappropriateoffset.Thealgorithmpre-fetchesthegeome-
try correspondingto all thenodesoverlappingwith the“ex-
panded"AABBs.

5. Proximity Computations

In this section,we briefly describethe algorithmsbasedon
boundingvolumehierarchiesusedfor performingcollision,
distance,andtolerancetests.A number of algorithmshave
beenproposedin theliteraturefor thesecomputationsbased
on hierarchiesof bounding volumes.They vary basedon
the choiceof bounding volume,whetherthe treesarecon-
structedin a top-down or bottom-upmanner and the order
of traversal(depth-firstor breadth-first).As aresult,theper-
formanceof different algorithmsvariesin termsof speed,
storagerequirements,and robustnesson different models.
In our system,we have provided support for threedifferent
boundingvolumes(spheres,AABBs andOBBs) aspart of
a genericframework whereonecaneasilyintroducea new
boundingvolume.

Givenalargemodel,thetreeof tight-fitting bounding vol-
umesis constructedtop-down by recursively subdividing a
group of primitives (polygons, triangles,etc.) using statis-
tics of vertex distribution, eigendecompositionandgeomet-
ric techniques 12. After tree-building, any proximity test,
whethercollision detection,distancecomputationor toler-
anceverification,proceedsby recursively checkingbound-
ing volumesfor the desiredqueries.If the parentbounding
volumes(BVs) fail thequery, thenthechildrenof theseBVs
aretestedpairwise.If the childrensatisfy the querycondi-
tion, then that recursionbranchterminates.Otherwise,the
recursive testcontinuesin a similar fashion.

If thequeryiscollisiondetection,thenthequerycondition
is to checkBVs for overlap.If thequeryis distancecompu-
tation, thenthe testcheckswhetherthe separationbetween
thecurrentBVs is greaterthantheupper bound distanceat-
tainedsofar. Initially theupper boundis setto thedistance
betweenany two pointson themodel.At eachnode,theal-
gorithm computesthe distancebetweenall four cross-pairs
of childrennodesandrecursively traversestheclosestpairof
nodesaftercomparingit with theglobalminimumdistance.
Finally, if thequeryis toleranceverification,thentherecur-
sion terminateswhen the BVs areseparatedby more than
theuser-specifiedthresholdamount.

B42

Appeared in Proc.of Eurographics1999

5.1. Choiceof Bounding Volumes

Our systemfor interactive proximity queriesalso allows
the userto selectfrom a paletteof desirableoptionsusing
compile-timeswitches.Theseswitchescontrol conditional
compilationof the sourcecodeusingthe #if C++ compiler
directive to effectively specializethe codeto suit the needs
of applications.Thebasicsystempromptstheuserto make
application-dependentchoicesregardingthe boundingvol-
umetype,coordinatesystemfor updates(nestedor flat) and
tree traversalscheme(breadth-first,depth-firstor priority-
directed).Defaultsareusedwhennoneis specified.

Thetypeof bounding volumesavailableincludespheres,
axis-alignedboundingboxes(AABBs) andorientedbound-
ing boxes(OBBs).This choiceaffectsmemoryusage,tree
pruning and bounding volume overlap tests.The selection
of boundingvolumeschangesdependingon thegeometryof
the modelsusedin the applications,the natureof interac-
tionswith thevirtual environments,contactfrequenciesand
configurations, andthetype(s)of most-frequentlyperformed
proximity computations.

5.2. Lazy Hierar chy Construction

The systemalso allows the user to have the treesof the
bounding volume hierarchiesbuilt on an as-neededbasis.
Childrenof a nodeareconstructed just prior to beingvis-
ited. As a result,only thoseportionsof the treeswhich get
visitedareactuallybuilt. For ashortsequenceof queriesthis
can yield significant time and storagesavings. Interaction
with a massive model is often localizedto only a small re-
gion of the model.For the hierarchyconstruction,we use
a top-down approachbasedon the vertex distribution 12 to
computetight-fitting bounding volumes.

6. SystemImplementation and Performance

In this section,we describethe implementationof our sys-
tem.This includesa systemoverview, graphpartitioningal-
gorithms,andtheruntimesystemfor dynamicenvironments.
We also highlight its performance on a CAD model of a
coal-firedpower plantcomposedof 15 million triangles(as
shown in Fig. 12). The modelcameto us asa collectionof
morethan1800objectsor functiongroupswith notopology,
structureor hierarchyinformation.It occupiesmorethan1 � 3
GB of disk space.

6.1. SceneGraph

Ourscenegraphcloselyresemblesthatof IRISPerformer24.
Objectsarecontainedin the leaf nodesof the scenegraph,
andeachinternalnodeis annotatedwith the bounding box
of all of its children.Eachof the roughly 1800 functional
groupsfrom the original model becomesa subtreewhose
root is agrandchildof therootof theentiregraph.Thedirect
childrenof therootaresimplycontainersfor thesefunctional

groups.To quickly renderobjectsbeingcheckedfor interfer-
ence(aspartof a runtimesystem),we generatemultiple ge-
ometriclevelsof detail(LODs) for mostobjects.TheLODs
arestoredin the scenegraphassiblingsof the original ge-
ometry. They areonly usedfor renderingandnot proximity
queries.

6.2. Bounding VolumeHierar chies

Our testmodel,thecoal-firedpower plant,consistsof many
complex piping structuresthatareaxis-aligned.Spheresare
not a goodapproximationfor this type of geometry. Since
the usercanonly interactwith a small portion of the mas-
sive modelat a time (dueto sizedifferential),mostpart of
themassive modelcanbeassumedto bestationary. Further-
more,OBBs requiremore storagethan AABBs in general
andoneof our goalsis to minimize the frequency of disk
access.Therefore,we have usedAABBs as the bounding
volumesin performingquerieson the power plant. To re-
ducethememoryoverhead, thehierarchiesarenot fully tra-
versedduring interferencetests,andwe usedlazy construc-
tion. Only therootof thetreeis createdduringinitialization,
andconstructionof further levels is deferreduntil somein-
terferencetestaccessesthem.

6.3. Graph Partitioning and Refinement

We applied the partitioning algorithm (composedof three
sub-algorithms)presentedin Section4 to performproximity
queriesbetweenobjectsin the power plant. The estimated
memoryusageper trianglewas200 bytes(sincewe areus-
ing double precisionarithmetic),includingspaceto storethe
triangleitself andtheoverheadof AABB hierarchyconstruc-
tion.Thisallowedaconservativechoiceof objectcachesize,
given a particularmemorylimitation. For instance,our tar-
getmemorycachesize,M, was160Megabytes,which cor-
respondsto about800� 000triangles.

Objectdecomposition,or nodesplitting,duringthegraph
processingwasbasedon k-d treedecompositionsof objects
in thescenegraph.Eachobjectwasdecomposedinto some
setof descendants in its k-d tree,suchthateachdescendant
wasno larger thanone-tenthof the sizeof the cache,(i.e.
80� 000 triangles).We useda public domain implementa-
tion of amulti-level partitioningalgorithm,METIS 16, avail-
ablefrom the University of Minnesota.High valencenode
removal andpartitioningwereappliedin alternation.When
onesub-algorithmwasusedto decomposeacomponent,any
resultingcomponentsstill largerthanthecachesizewerede-
composedby the othersub-algorithm. We found that using
thesesub-algorithmstogetherresultedin bettercacheutiliza-
tion thanonemethodalone.

6.3.1. Impact of CacheSize

Ourgraphpartitioningandrefinementalgorithmstry to min-
imize thenumberof disk accesses.Weappliedthepartition-
ing sub-algorithmsto the power plant model with several

B43

Appeared in Proc.of Eurographics1999

0 2 4 6 8 10 12 14 16

x 106

0

0.5

1

1.5

2

2.5

3
x 108

Triangle Limit of Memory Cache

T
ot

al
 T

ria
ng

le
s

Lo
ad

ed
 fr

om
 D

is
k

O
ve

r
A

ll
Q

ue
rie

s

Figure 8: This graph highlights the data fetched from the
diskduring graph partitioning and refinement algorithm as
a functionof cachesize. Whilea smallcachesize(� 250K
polygons) resultsin a veryhighnumberof diskaccesses,the
algorithm is able to efficiently partition the modeland per-
form proximityquerieswith a cachesizeof 800K polygons.
Themodelis composedof more than15 million triangles.

differentcachesizes.In Fig. 8, we show the numberof tri-
anglesloadedfrom thedisk asa functionof thecachesize.
For asmallcachefor 150Ktriangles(i.e.30MB), weneedto
loadeachtriangle60 timesfrom thedisk on average.How-
ever, with acache800K triangles(i.e.160MB) weloadeach
triangleabout 4 � 2 timeson average.Notice that we would
otherwiseneedmore than 3 � 2GB to load the entiremodel
andits bounding volumehierarchy.

6.4. SystemPipeline

We have dividedour systeminto threeseparatephases:col-
lide/proximityquery, render/draw, andprefetch,asshown in
Fig. 9. The collide phaseis responsible for traversing the
overlap graph,determiningwhich proximity computations
must be performed,and evaluatingthosetests.The render
phasedisplaystheobjectscurrentlybeingexamined.Finally,
the prefetchphaseis responsible for looking aheadto tests
soonto be performedandretrieving from disk any objects
thatarenot alreadyavailablein mainmemory.

6.4.1. Collide Phase

The proximity queries are performed during the collide
phase.We implementthis phaseastwo or moreprocesses:
one to traversethe overlapgraph,andoneor more to per-
form the proximity computations indicatedby the traversal
process.This allows us to take greateradvantageof mul-
tiprocessorconfigurations. Eachindividual collide process
requestsobjectdatafrom theprefetchphaseon demand.

What to
Fetch?

Scene
Graph

Move
Viewpoint

What to
Query?

What to
Draw?

Prefetch Cache

Draw

Proximity
Query

Generate
Response

Disk
Overlap
Graph

Start of
Frame

End of
Frame

Figure 9: Overview of theInteractiveProximityQuerySys-
tem

6.4.2. PrefetchPhase

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

Proximity threshold (mm)

T
im

e
fo

r
ea

ch
 t

es
t

(m
ic

ro
se

co
n

d
s

Figure 10: This graph showsthe average time for a prox-
imity query along a samplepath. The proximity threshold
corresponds to the valueusedfor toleranceverification. A
zero valueindicatescollision.

Theprefetchphaseis responsiblefor ensuringthatobjects
and renderables are available in main memoryat the mo-
mentwhenthey areneededfor renderingor proximity test-
ing.For staticenvironments,this is accomplishedby travers-
ing the overlap graph in exactly the samemanner as the
collide tasks,but stayinga few stepsaheadof the collide
testsandloadingthetwo objectsin eachtestinsteadof actu-
ally testingthem.Theseobjectsaremaintainedin amemory
cachewhosesizeM is givenasaparameterto thegraphpar-
titioning and refinementprocedures.To take advantage of
thelocalizednatureof our method,this cacheis maintained
with a least-recently-used eviction policy. Weimplementthe
prefetchphaseasa single,free-runningprocessthataccepts
requestsfor objectsfrom the renderandcollide phasesand

B44

Appeared in Proc.of Eurographics1999

providesaccessto thecontents of themodelcache.If a par-
ticularmodelis accessedbeforeit hasbeenloadedfrom disk,
therequestis blockeduntil thedatais available.

6.4.3. Render Phase

The renderphasedisplayson-screenthe two objectscur-
rently beingchecked for collision or proximity. Particularly
in a massive model, it is possiblefor objectsto be large
enough thatrenderingthemmaybesignificantlyslower than
performinga proximity testbetweenthem.For this reason,
wemaydisabletherenderphasewhendealingwith astrictly
staticenvironment.Onepossibilityis to runthecollisionand
renderingtasksasynchronously;however, that canresult in
raceconditions.In adynamicenvironment, therenderphase
drives the restof the computation. During eachframe,the
renderphasequickly traversesthe scenegraphto find ob-
jects which might overlap or might soonoverlap dynamic
objectsunder the user’s control.We do not even attemptto
renderdistantobjectsin thissystem.Any necessaryproxim-
ity queriesaredispatchedto collide tasks,andany necessary
dataarerequestedfrom theprefetchtask.As soonasthere-
sultsof the proximity queriesareavailable,the objectsfor
thecurrentframearedrawn to indicatewhetheror not they
participatein aoverlap.Weimplementtherenderphaseasa
singletaskin orderto avoid costlyOpenGLcontext switches
duringrendering.

Breakdown of time per frame

0

200

400

600

800

1000

1200

1400

1600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Frame number

T
im

e
sp

en
t

in
 p

h
as

e
(m

s)

Collide phase

Render

Figure 11: Timespentbetweenthecollision phaseandren-
deringphasefor a samplepath

6.5. Performance

The systemhas beenusedto perform a numberof static
anddynamicproximity querieson the power plant models.
Theseinclude finding all interferencesor objectswithin a
tolerancethreshold. We controlled the motion of a avatar,
modeledwith 4 � 000 triangles,and were able to interac-
tively performcollision detectionandtoleranceverification
queriesin a few millisecondson a SGI Infinite Realitywith
four 195MHz processorsandusinga memorycacheof 160

MB. The performanceof the algorithm along somesam-
ple pathsis shown in Graph10 and11. Color platesII-IV
show somesnapshotsfrom oursystem.Moviesshowing live
footageof our systemin operationaswell asa pre-rendered
zoomonthepowerplantmodelcanbedownloadedfrom the
following URL:

http://www.cs.unc.edu/˜geom/mmc/

7. Conclusionand Future Work

In thispaperwehavepresentedanalgorithmandasystemto
performproximity computationsat interactive rateson mas-
sive models.As part of pre-processing, our algorithm au-
tomaticallycomputesproximity datastructuresin termsof
overlapgraphsand localizedsub-graphs and tries to mini-
mizethenumberof disk accesses.Weusebounding volume
hierarchiesto accelerateproximity queriesand presental-
gorithmsthat load a small andlocal subsetof the model in
the main memory. We have implementedour algorithmas
a systemcalled IMMPACT and usedit to perform simple
interactionswith themodelof a coal-firedpowerplant com-
posedof 15 million triangleswith a memorycachesizeof
160 MB. We believe that our algorithm and systemscale
well with themodelsize.In termsof applicationdomain,it
canperformproximity querieson modelscomposedof tens
of millions of polygons at interactive rates.Earliersystems
for collision detectionandtoleranceverificationcould only
handlemodels composedof hundreds of thousandsof poly-
gonsat interactive rates.

Therearemany avenuesfor future work. We would like
to perform more complex interactiontasksusing our sys-
tem.Many designersareinterestedin automaticplacement
of parts,givensometoleranceconstraints.We would like to
userobot motion planningalgorithmsfor computingcolli-
sion freeconfigurations andpaths.Finally, we would com-
binethissystemwith aninteractivemassivemodelrendering
system1 andusethemfor simulation-baseddesignapplica-
tions.

8. Acknowledgement

Wearegratefulto StefanGottschalkfor providing uswith a
framework to implementdifferentbounding volumehierar-
chies11. TheIMMPACT systemisbuild ontopof thatframe-
work. Wearealsoalsogratefulto JamesCloseandCombus-
tion EngineeringInc. for providing us with the modelof a
power plant.

Supportedin partby ARO ContractDAAH04-96-1-0257,
NSFCareerAwardCCR-9625217, ONRYoungInvestigator
Award (N00014-97-1-0631),NIH/National Centerfor Re-
searchResourcesAward 2P41RR02170-13 on Interactive
Graphicsfor Molecular Studiesand Microscopy, an NSF
GraduateResearchFellowship,andIntel.

B45

Appeared in Proc.of Eurographics1999

References

1. Aliaga et al. A framework for real-timewalkthroughs
of massive models. TechnicalReportTR98-013,De-
partmentof ComputerScience,University of North
Carolina,1998.

2. Lisa SobierajskiAvila andWill iam Schroeder. Interac-
tive visualizationof aircraft andpower generationen-
gines.In RoniYagelandHansHagen,editors,IEEEVi-
sualization9́7, pages483–486.IEEE,November1997.

3. G. Barequet,B. Chazelle,L. Guibas,J. Mitchell, and
A. Tal. Boxtree:A hierarchicalrepresentationof sur-
facesin 3d. In Proc.of Eurographics’96, 1996.

4. Richard Bukowski and Carlo H. Séquin. Interactive
simulationof fire in virtual building environments. In
SIGGRAPH97 ConferenceProceedings, pages35–44,
1997.

5. S.Cameron.Approximationhierarchiesands-bounds.
In Proceedings.Symposiumon Solid Modeling Foun-
dationsand CAD/CAM Applications, pages129–137,
Austin,TX, 1991.

6. StephenCameron.A comparisonof two fastalgorithms
for computing the distancebetweenconvex polyhe-
dra. IEEE Transactionson Roboticsand Automation,
13(6):915–920, December1996.

7. J. Cohen,M. Lin, D. Manocha, and M. Ponamgi. I-
collide:An interactiveandexactcollisiondetectionsys-
tem for large-scaleenvironments. In Proc. of ACM
Interactive 3D GraphicsConference, pages 189–196,
1995.

8. Michael B. Cox and David Ellsworth. Application-
controlled demandpaging for Out-of-Corevisualiza-
tion. In Roni YagelandHansHagen,editors,IEEEVi-
sualization9́7, pages235–244.IEEE,November1997.

9. T. Funkhouser, C. Sequin,andS. Teller. Management
of large amounts of datain interactive building walk-
throughs. In ComputerGraphics (1992 Symposium
on Interactive3D Graphics), volume25, pages11–20,
1992.

10. E. G. Gilbert,D. W. Johnson,andS.S.Keerthi. A fast
procedure for computing the distancebetweenobjects
in three-dimensionalspace.IEEE J. Roboticsand Au-
tomation, vol RA-4:193–203,1988.

11. S. Gottschalk. Collision Queries using Oriented
Bounding Boxes. PhDthesis,Universityof North Car-
olina.Departmentof ComputerScience,1999.

12. S. Gottschalk,M. Lin, andD. Manocha. Obb-tree:A
hierarchicalstructurefor rapid interferencedetection.
In Proc.of ACM Siggraph’96, pages171–180,1996.

13. B. HendricksonandR.Leland.A multi-level algorithm

for partitioning graphs. TechnicalReport SAND93-
1301,SandiaNationalLaboratory, 1993.

14. P. M. Hubbard. Interactive collision detection.In Pro-
ceedingsof IEEE Symposiumon Research Frontiers in
Virtual Reality, October1993.

15. D. JohnsonandE. Cohen. A framework for efficient
minimum distancecomputation. IEEE Conferenceon
RoboticsandAutomation, pages3678–3683, 1998.

16. G. KarypisandV. Kumar. A fastandhigh quality mul-
tilevel schemefor partitioningirregular graphs. SIAM
Journal onScientificComputing, pages269–278,1996.

17. J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral,
andK. Zikan.Efficientcollisiondetectionusingbound-
ing volumehierarchiesof k-dops. In Siggraph’96 Vi-
sualProceedings, page151, 1996.

18. S.Krishnan,M. Gopi,M. Lin, D. Manocha,andA. Pat-
tekar. Rapid and accuratecontactdeterminationbe-
tweensplinemodelsusingshelltrees.In Proc. of Eu-
rographics’98, 1998.To appear.

19. E. Larsen,S. Gottschalk,M. Lin, and D. Manocha.
Sweptspherevolumesfor fastproximity queries.Tech-
nical ReportTR99-018,Departmentof ComputerSci-
ence,Universityof North Carolina,1999.

20. M. Lin andS.Gottschalk.Collision detectionbetween
geometricmodels:A survey. In Proc. of IMA Confer-
enceon Mathematicsof Surfaces, 1998.

21. M.C. Lin andJohnF. Canny. Efficient algorithmsfor
incrementaldistancecomputation.In IEEEConference
on RoboticsandAutomation, pages1008–1014,1991.

22. Brian Mirtich. V-Clip: Fast and robust polyhedral
collision detection. ACM Transactionson Graphics,
17(3):177–208,July 1998.

23. S. Quinlan. Efficient distancecomputationbetween
non-convex objects. In Proceedingsof International
Conferenceon Roboticsand Automation, pages3324–
3329,1994.

24. J. Rohlf andJ. Helman. Iris performer:A high perfor-
mancemultiprocessortoolkit for realtime3d graphics.
In Proc.of ACM Siggraph, pages381–394,1994.

25. R. Seidel.Linearprogramming andconvex hulls made
easy. In Proc. 6th Ann.ACM Conf. on Computational
Geometry, pages211–215,Berkeley, California,1990.

26. S. Teller, C. Fowler, T. Funkhouser, andP. Hanrahan.
Partitioningandorderinglargeradiositycomputations.
In Andrew Glassner, editor, Proceedingsof SIGGRAPH
’94, pages443–450.ACM SIGGRAPH, 1994.

27. S. J. Teller. Visibility Computations in DenselyOc-
cludedPolyheral Environments. PhD thesis,CS Divi-
sion,UC Berkeley, 1992.

B46

Appeared in Proc.of Eurographics1999

Figure12: CADmodelof a coal-fired powerplant with more
than 15 million triangles.Themodelconsistsof more than
1800objectsandtakesmore than1.3GBon disk.

Figure 13: Proximity queriesbetweenan avatar and the
powerplantmodel. IMMPACT takes a few millisecondsto
performthesequeries.

Figure14: Interactivecollision detectionbetweena moving
objectsandpipesin thepowerplant.

B47

