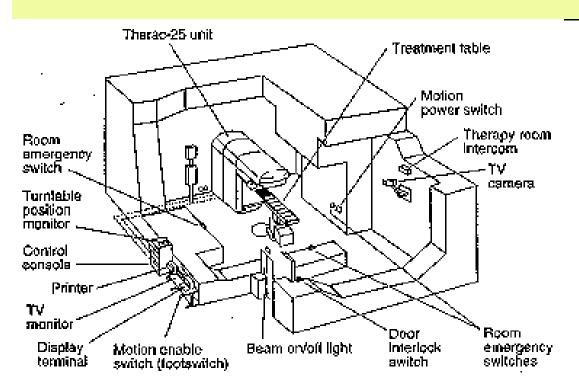
Reliability

- Some systems that computers control:
 - Banking; finance; stock market; commerce; e-commerce
 - Medical systems (diagnostics; life support...)
 - Communications systems/networks
 - Buildings (HVAC, security, lights...)
 - Basic infrastructure
 - Energy (power plants; toxic chemical plants; oil & gas pipelines)
 - Water; sewer...
 - Traffic signals, transportation systems
 - Air traffic control, air craft, space craft
 - Military (Command & control; defense & weapons systems--missiles, ships, tanks, ...)
 - Personal and household items

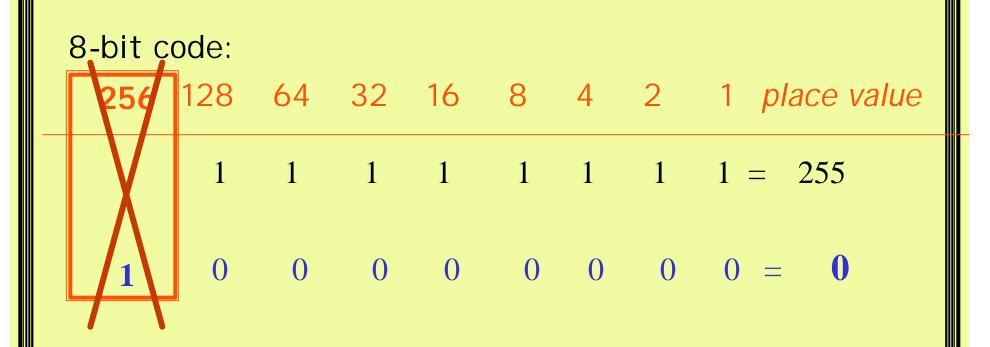

- Many reasons for failure in computer systems:
 - Software "bug"…?
 - Poorly designed software
 - Poorly designed user interface...meaning?
 - Improper use:
 - using system for purpose unintended by creator
 - lack of user training
 - poor documentation
 - Data entry error –-Incomplete data
- What might be a cause for *these* failures:
 - 1. The outrageous phone bill.
 - 2. Ninth grader's hopes dashed.
 - 3. Apartment living in L.A.
 - 4. Plane heads in wrong direction.
 - 5. Patriot missiles fail to launch.
 - 6. USS Vincennes shoots down civilian airbus.

- And then there's the Denver Airport's \$193m baggage system (mid 90s)
 - What did they promise about your luggage?
 - What happened during testing?
 - If you could select **one word** to describe Denver's troubles, what would it be? (*Why is this so hard?*)

Therac-25 (*landmark* case of how things can go awry)

- What was this device used for?
- How was its design *fundamentally* different from that of its predecessors (#6, #20) with regard to *safety* features? ...*and* SO what?

- Understanding Therac:
 - How many operating modes did it have?
 - Why > 1 mode in *one* machine, do you think?
 - To create X-ray photons ...
 - 1985-1987: Six known accidents ...



Early March 1986,
 Tyler, Tx:

- Vernon Kidd
 receives dose > 100
 times prescribed
 dose. What
 happened that day...
- What could have prevented that---*aside from* the operator choosing <u>not</u> to proceed?

- AECL engineer: could not reproduce error.
 - It's not possible for Therac-25 to give an overdose ...
- Tested by independent engineering firm.
 - Machine does not appear capable of giving a patient an electrical shock...
- Put back in use in late March.....then:
- 2nd acc. in Tyler, Tx, late March (Ray Cox)
 - Same operator, 3 weeks later...
 - This time, physicist replicated Malfunction 54.
 - Data entry speed during editing was <=8 seconds
 - Interesting note here
 - So what was the crux of the problem in **both** cases?
 - With *hardware* safety interlocks, instructions *are hardwired into* the hardware; might blow a fuse.

- A second known software design error (bug):
 - Why was "Set-Up" test done before each treatment?
 - What's a *flag variable*? (in English!)
 - If device NOT ready, what did program do to ensure the variable was not equal to 0?
 - Theoretically, what could happen to a flag variable *value* during testing?
 - The variable was defined by programmer to be *how large?*
- How large a *decimal value* can an **8-bit byte** represent before it *overflows* (left-most digit is truncated)? Let's see:
 Comp 96—Computers and Society

- What happened when routine was done the 256th time?

– So what caused that software "bug"?

• Digression:

- Analog systems: very small change in input produces very small change in response.
 - EG: bimetallic strip to measure temperature. Won't change or fail catastrophically if there's a slight change in input.
 - Digital: How did ONE BIT CHANGE make a difference?
 - And can ripple throughout.
- So what would have been a *much better* way to handle that **flag variable**?

Why so many incidents (six accidents!) before it was finally taken out of service?
– Several reasons....

So.... WHO WAS TO BLAME?

- Programmers? What did they do wrong?
- Vendor?
 - "The Titanic Effect"
- Customers (hospitals, clinic staff)?
- The FDA? (related problems here?)

- AGAIN: what SINGLE word describes why reliability here is so HARD?
- "The ethical dimensions of computer reliability are bound up with the nature of software, and the complexity of such systems."
- The development process is complex.
 - In a large system, no one person understands the entire system.

- Theoretically speaking, what would it take to create perfectly reliable software?
 - In other words, when would it have to work right?
 - Then *what* would the programmers, and especially the **testers**, need to know?
 - Is that ever possible?
 - **Illustration** of system that monitors performance of nuclear power plants ...
 - Testing: proves the presence of bugs, not the absence!
 - Fixing one bug can introduce others

- What BIG question should we ask before we "throw the baby out with the bath water"?
- A more realistic definition of reliable softwre:
 - "probability that it will not fail during a given period of operation under given conditions."
 - GOAL: reduce risk (more shortly).
- Another big problem for programmers:
 - Pressure to finish a product and get it to market.
 Why?

RISK

- Is it reasonable to demand zero risk?
- Doesn't hardware ever fail?
- We trust our lives to risky "high tech" tools daily.
 - Any risks with other tools? Such as:
 - Things you get into.... Risks?
 - Things you **plug in** and use.... Risks?
 - Any risks with really *low-tech* tools?

• Digression:

– What do technology critics say?

– What do others say to dispute that?

- Is our dependency on computers different from our dependency on other technologies, such as electricity? The plow?
- Are mistakes in software the *same* as those that occur with, say, electricity? Why or why not?

- How can we avoid risk of a tool altogether?
 - Elevator? Auto accident?

- When any tool breaks down, what does it remind us of?
- Why do we use RISKY tools?
- When should negative effects condemn a tool?
- Some tough questions
- What were some lessons learned here?

"I'm happy to work on games...; critical systems are scary....But I would like to make a difference."