$$
\begin{gathered}
\text { How a Computer Works } \\
\text { What is it? What is it good for? }
\end{gathered}
$$

- Definition of "computer" prior to 1940s?
- Mind tool, or intelligence amplifier
- A concept manipulator

What does it do?

- Accepts inputs
- Manipulates them (transforms them)
- Produces outputs

- So, what distinguishes the computer from other machines or tools?
- With computers, what else is needed to do the transformation, then?
- How is that different from other machines/tools??
- In that case, what would be another good descriptor?
- Example of special-purpose computer?

How?
 A computer system

- HARDWARE: physical components
- Input (such as?)
- Processing: CPU (microprocessor chip)
- Storage (two kinds; physically, radically different)
- Output (examples?)
- SOFTWARE:
- Program (code):-step-by-step instructions that tell the computer what to do and with what data. Instructions are imperative and are carried out one after another.
- CPU
- Control and manipulation of data occur here.
- Simple minded!

Two parts:

1. Control unit

- FETCHES INSTRUCTION

Processor
CU ALU

Memory
Instructions/data stored here

- DECODES INSTRUCTION
- Tells the Arithmetic \& logic unit what to do.

2. Arithmetic \& logic unit

- Adds, subtracts, multiplies, divides, and tests things (compares).
- MEMORY: a place to hold data/information and instructions.
"I wo-levelstorage"
- Primary memory
- RAM: "User" memory. Temporary. Volatile.
- Fully electronic (data stored as electrical charges-no moving parts). FAST!
- Secondary memory (Auxiliary)
- Permanent, long-term, plentiful, cheaper.
- Examples?
- Access: at least 10,000 times slower than primary memory. Why?
- Why do we need secondary?

Logic al organization

 data in use now

Storage

LOTS of programs and data files stored here

Data/information representation

- How humans communicate with each other...
- What are the five kinds of "information"?
- We want to use a single way to represent all these forms of communication:
- Because we want to use an electronic computer to manipulate them all.
- The most basic component: the SWITCH ...
- Therefore, to use switches to represent our many forms of communicating, we first need to encode those forms.
- Data \& instructions can be encoded as numbers, which are associated with parts of an electronic machine (switches) and their state at a given moment.
- What kind of basic switch do we use every day?
- how many states/conditions does it have?
- Why use such a simple switch?
- First: representing decimal numbers

Something about numbering systems:

- Additive: /////////// (twelve)

- Positional: 12 (ten plus two)
- "Face" value
- "Place" value-depends upon the base
- Base determines number of unique symbols used
- Decimal system (base ten): Arabic nos. 0-9
ten 5 ten $^{4} \quad$ ten 3 ten ${ }^{2}$ ten ${ }^{1}$ ten 0
$\begin{array}{llllll}100,000 & 10,000 & 1,000 & 100 & 10 & 1 \text { (place value) }\end{array}$
Comp 96-Computers and Society
- All positional numbering systems work alike. 0 thru 9
- Decimal:

Decimal digits

Base 10

- Binary:

0 and 1

Base 2

$|$| | 2^{6} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| | | | | | | |

- Making sense?
- How do you represent decimal value 37 in binary code?
- What about decimal value 63 ?
- Just for culture; try these on your own...
- What is the decimal number value of each of these?

$$
\begin{array}{r}
1111 \\
10111 \\
1000110
\end{array}
$$

- Recap: Decimal numbers can be represented \& stored logically in binary form as bits, and physically with switches.
- Numbers are associated w/machine parts and what condition each part is in at that moment:

10001
 On Off Off On

- Binary system: Allows computer to represent decimal values as a collection of on/off signals.

- Logical structure, then:
- Binary Os and Is: Binary digits. Bits.
- Bit: smallest, most basic data unit in a computer.
- So how do we represent a bit "in the box"?

- What about representing numbers used only as text; and letters and symbols?
- Binary codes: unique bit patterns of 1 s and 0 s
- 2 switches (two-bit code) can represent four different things:
- OFF OFF OFF ON ON OFF ON ON

Just -4 switches (four-bit code): enough different for combinations to represent 16 things.
Culture: •Four switches, two possible conditions each: 2^{4}

- Enough to represent all decimal digits (used as text).

Comp 96-Computers and Society

- Eight-bit code (8 switches): 256 unique things

- Schemes: ASCII; EBCDIC; Unicode ...

- Representing Pictures ($\mathcal{R H}-X)$ ($j u s t$ for culture)
- Representing Sounds ($\mathcal{R H} \mathcal{X}$) (just for culture)
- Representing Instructions ($\mathcal{R} \mathcal{H}-X)$ (more shortly)

"Symbol-processing machine"

Units of storage:

Single binary digit
7 or 8 bits:
1 kilobyte (KB):
1 megabyte (MB):
1 gigabyte (GB):
1 terabyte (TB):
bit
byte (one character) about 1000 bytes (2^{10}) about a million bytes $\left(2^{20}\right)$ about a billion bytes $\left(2^{30}\right)$ about a trillion bytes $\left(2^{40}\right)$

Analog and digital

－Most everything around us：continuously varying intensities or values．
－ANALOG：quality reduction w／reproduction．几几
－Everything represented in the computer is stored as discrete，＂countable＂units．What are the units called（logical form）？Physical form？
－DIGITAL：copy is exactly like original． ـ几几

Word Game (RH-X)

- Who/what was the processor in this game?
- What was the basic instruction set used for?
- How did you know what to do in what order?
- How are instructions different from data?
- What was the output?
- What served as the input (raw data)?

CPl obeys orders to transform raw data into meaningful info.)

Basic instruction set:
Primitive commands ($\log 1$ l) it can do with STO; ADD; SUB; MUL; DIV; INC; CMP; JMP...
hardwired computer circuits (phyl).

Program:
Tells CPU which to do in what order.

Carbon-based unit

You lovey orders to transform pages of words into meaningful message.)

Basic instruction set:
Simple commands you can do with GOTO \#; SELECT LINE \#, FORWARD \#; BACKUP \#; ;...

Hardwired skills; finds; eyes...

Program:
Tells you which to do in what order.

