How a Computer Works What is it? What is it good for?

- Definition of "computer" prior to 1940s?
- Mind tool, or intelligence amplifier
- A concept manipulator

# What does it do?

- Accepts inputs
- Manipulates them (transforms them)
- Produces outputs



- So, what distinguishes the computer from other machines or tools?
- With computers, what *else* is needed to do the transformation, then?
  - How is that *different* from other machines/tools??
- In that case, what would be another good descriptor?
- Example of *special-purpose* computer?

# How?

A computer system

- HARDWARE: physical components
  - Input (such as?)
  - Processing: CPU (microprocessor chip)
  - Storage (two kinds; physically, radically different)
  - Output (examples?)
- SOFTWARE:
  - *Program (code):*—step-by-step instructions that tell the computer *what to do* and *with what data*.
    Instructions are *imperative* and are carried out one after another.



- **MEMORY**: a place to hold data/information and instructions.
  - "Two-level storage"
    - Primary memory
      - RAM: "User" memory. Temporary. Volatile.
      - Fully electronic (data stored as electrical charges—no moving parts). FAST!
    - Secondary memory (Auxiliary)
      - Permanent, long-term, plentiful, cheaper.
      - Examples?
      - Access: at least 10,000 times slower than primary memory. Why?
    - Why do we need secondary?



## Data/information representation

- How humans communicate with each other...
- What are the five kinds of "information"?
- We want to use a *single* way to represent *all* these forms of communication:
  - Because we want to use an *electronic* computer to manipulate them all.
  - The most basic component: the SWITCH ...
  - Therefore, to use switches to represent our many forms of communicating, we first need to *encode* those forms.

- Data & instructions can be encoded as numbers, which are associated with parts of an electronic machine (switches) and their state at a given moment.
- What kind of basic switch do we use every day?
  - how many states/conditions does it have?
  - Why use such a simple switch?
- First: representing *decimal numbers*

#### Something about numbering systems:

- Positional: 12 (ten plus two)
  - "Face" value
  - "Place" value—depends upon the **base**
  - Base determines number of unique symbols used





| <b>ح 2</b> 6                  | <b>2</b> <sup>5</sup> | 2 <sup>4</sup> | <b>2</b> <sup>3</sup> | 2 <sup>2</sup>                  | <b>2</b> <sup>1</sup>                     | <b>2</b> <sup>0</sup>                               |
|-------------------------------|-----------------------|----------------|-----------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------|
| <b>4</b> 64                   | 32                    | 16             | 8                     | 4                               | 2                                         | <b>1</b> (place value)                              |
|                               |                       |                | 1<br>1<br>1           | 1<br>1<br>1<br>1<br>0<br>0<br>0 | 1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 |
| Comp 96—Computers and Society |                       |                |                       |                                 |                                           | 12                                                  |

- Making sense?
  - How do you represent decimal value 37 in *binary* code?
  - What about decimal value 63?

- Just for culture; try these on your own...
   What is the decimal number value of each of these?

   1111
   10111
  - 1000110

- Recap: *Decimal* numbers can be represented & stored *logically* in *binary* form as bits, and *physically* with switches.
  - Numbers are associated w/machine parts and what *condition* each part is in at that moment:

# 1 0 0 1 On Off Off On

 Binary system: Allows computer to represent *decimal* values as a collection of on/off signals.





- What about representing numbers used only as *text*; and *letters* and *symbols*?
  - Binary codes: unique bit patterns of 1s and 0s
  - 2 switches (two-bit code) can represent four different things:



- Four switches, two possible conditions each:  $2^4$
- Enough to represent all decimal digits (used as text). Comp 96—Computers and Society



- Representing Pictures (RH-X) (just for culture)
- Representing Sounds (RH-X) (just for culture)
- Representing Instructions (RH-X) (more shortly)

"Symbol-processing machine"

## **Units of storage:**

Single binary digit 7 or 8 bits: 1 kilobyte (KB): 1 megabyte (MB): 1 gigabyte (GB): 1 terabyte (TB):

Comp 96—Computers and Society

bit

byte (one character) about 1000 bytes (2<sup>10</sup>) about a million bytes (2<sup>20</sup>) about a billion bytes (2<sup>30</sup>) about a trillion bytes (2<sup>40</sup>)

18

## Analog and digital

• Most everything around us: *continuously varying* intensities or values.

ANALOG: quality reduction w/reproduction.
 M

- Everything represented in the computer is stored as *discrete*, "countable" units. What are the units *called* (logical form)? Physical form?
  - DIGITAL: copy is exactly like original.  $\Box$

### Word Game (RH-X)

- Who/what was the *processor* in this game?
- What was the *basic instruction set* used for?
- How did you know what to do in what order?

- How are *instructions* different from *data*?
- What was the output?
- What served as the input (raw data)?



## Silicon-based unit

**CPU** (obeys orders to transform raw data into meaningful info.)

#### **Basic instruction set:**

Primitive commands (log'l) it can do

with STO; ADD; SUB; MUL; DIV; INC; CMP; JMP...

*hardwired* computer circuits (phy'l). *Hardwired* skills; hands; eyes...



#### **Program**:

Tells CPU *which* to do in *what* order.



You (obey orders to transform pages of words into meaningful message.)

#### **Basic instruction set:**

Simple commands you can do GOTO #; SELECT LINE #, with FORWARD #; BACKUP #; ;...



**Program**: Tells you which to do in what order.